A DATA ACQUISITION AND INFORMATION HANDLING
SYSTEM IN ADA FOR ELECTRON SPECTROSCOPY

by

Mats Carlsson and Lars Asplund,
Institute of Physics, Box 530, S-751 21 Uppsala, Sweden.

ABSTRACT

A distributed, real time, data acquisition computer system
for electron spectroscopy, ESCA, is presented. The design
and implementation in Ada involves windowing, menus,
forms, graphical presentation, multitasking and instrumen-
tal communication, Our experience using Adais discussed.
Adahasbeenusedinall phases. Data types and packages are
presented. It is found that the language is very suitable for
scientific purposes.

1.INTRODUCTION

The need for replacing the old data acquisition computer
system in recent years has grown. Discussions lead to a
series of demands:

« The software must be reusable and portable due to the
rapid development in computer hardware. The device
dependent parts in the system must be held at a mini-
mum.,

« The interaction with the user must be modern and user
friendly. Techniques like windowing, function keys,
menus and help structures must be included.

« The communication with the spectrometer electronics
must utilize a standard.

« The system may be of a single user type with the
possibility of several concurrent workstations.

+ The data acquisition and user activities in the system
must ron in parallel.

«» The data flow must run freely, but with strong typing,
within the system. Possibilities should be given toexport
data to external applications.

The purpose with this project was to gain knowledge in the
following areas:

+ How to design and implement a modern, distributed,
data acquisition system.

« How the language Ada supports the different phases in
system design and project management.

« Thebehaviorof Adaasareal time programming langua-
ge in a medium sized system.

« The portability of a modular system written in Ada
ranging from high level structures, data abstraction and
information hiding down to low level device dependent
constructs.

2.BACKGROUND

2.1. Ada as a programming language for scientific com-
puting.

Although the main area of interest when designing Ada was
embedded systems, the language contains powerful features
usefulin scientific computing. Features in the Adalanguage
that are important for scientific calculations are the strong
typing, overloading, generics, recursion and packages. The
specification of Ada permits calls to subprograms, procedu-
res and functions written in other programming languages.
1t is therefore possible to use the existing investments in
scientific software. The separation of the specification and
the body in Ada gives the possibility to hide the non Ada
implementation of autility and to give itanew specification.
Changeover can be postponed with the possibility of later
conversions into portable Ada.

2.2. Ada as a real time programming language.

Inthe programming of embedded systems the parallelism of
the controlled or monitored system must be considered.
Software engineering principlesindicate that the implemen-
tation language should, wherever possible, mimic the struc-
ture of the application domain. If the application contains
inherent parallelism then the design and construction of the
software will be less error-prone, easier to prove correctand
easier to adapt if concurrency is available in the design and
in the implementation language. Within an Ada program

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

there may be a number of tasks each of which has its own
thread of control. It is thus possible in Ada to match the
parallel nature of an application area. Besides the possibility
of several concurrent processes there is a need for synchro-
nization and communication.

During execution of a program, events or conditions may
occur, which might be considered exceptional. Such condi-
tions are often handled by the operating system with a run
time error followed by program termination. This is not
acceptable inanembedded system. The software muststand
both hardware and algorithmic faults. Ada gives the user the
possibility to raise, propagate or handle exceptions within a
program unit.

2.3. Computer systems in electron spectroscopy.

Reports about the development of the instrumentation in
electron spectroscopy has mainly been focused on compo-
nents like the electron analyzer, electron lenses, detectors,
sample handling and other instrumental hardware. The use
of computer software and hardware for the control of the
spectrometer has not to a large extent been separately
published. Itis therefore hard to discuss the general develop-
ment of the software specific for ESCA spectrometers. A
short review of the different techniques that have been used
in Uppsala will be given here.

The first computer for spectrometer control in Uppsala was
a PDP-15 with the RSX-15 operating system. The memory
was only 24 kwords and the programs for recording and
plotting spectra were written in assembler [1]. The compu-
ter served 4 spectrometers simultaneously. The next genera-
tion of computers were the Nuclear Data 6600 systems
equipped with two L.SI11 processors each. These computer
systems have powerful display systems, where spectra very
easily can be graphically manipulated. The software, howe-
ver, is for these machines still written in assembler [2].
Another approach has also been tried where a microcompu-
ter, SWTPC, is used with an interesting hardware device
connected between a video camera in the detector and the
computer itself [3].

Twoother small systems have been used where the software
have been written in FORTRAN 1V. One of the these
systems is a Nuclear Data 6600, which has been connected
to a second micro computer system based on a Motorola
M6800. The M6800 system does most of the data acquisi-
tion while the FORTRAN program in the ND6600 takes
care of the disk routines and the terminal

1/0. The communication between the ND6600 and the
M6800 is over a serial link [4].

The other system is based onaMINC 11/23,a DEC product,
equipped withaL.SI111/23 cpuand RT11 operating system.
The detector is in this case connected to the MINC via an
IEEE-488 bus. The detector interface has a dedicated mic-

roprocessor [5] controlling the hardware timing signals,
data buffering and bus communication.

The hardware running the system presented in this report
consistsof apV AX Il running MicroVMS 4.4 with 6 MB of
memory and one 70 MB disk. The detector, power supplies
and voltmeter are connected to the system with an IEEE-488
instrument bus. The computer system is also used for
calculations and spectrum analysis using CRUNCH [6].

3. SYSTEM DESCRIPTION
3.1. Principles of ESCA.

The instrumentation to be controlled by the new data acqui-
sition system are the ESCA spectrometers developed at the
Institute of Physics, Uppsala University. ESCA, Electron
Spectroscopy for Chemical Analysis, is an experimantal
technique that has reached an increased acceptance by
chemists and physicists both at universities and in industry
sinceits inception in the early 1950°s [7,8,9]. Under the past
years twonew spectrometers have been designed, and built,
one for the study of gases and solids, and the other for studies
of solids and in particular surfaces under ultra high vacuum
conditions [10].

Electron spectroscopy reveals fundamental properties of
matter. The method is especially usable in characterization
of the first atomic layers of a surface. When radiating a
sample, electrons are emitted by the photoelectric effect.
Different radiation energies can be used to excite the atoms
and molecules in the sample. With a UV-radiating source
the valence electrons can be investigated, and with a soft X-
ray source the valence and the core electrons can be studied.

The speed, or energy, of the expelled electrons depend only
ontheamountof energy to free the electron from the sample,
called the binding energy. Since a sample contains electrons
with different binding energies, an electron spectrum will
contain a number of peeks or electron lines. The set of
characteristic peak positions and relative intensities can be
used to determine the elements of presence, and there
relative concentrations.

3.2. The ESCA instrumentation.

AnESCA instrumentcomprises the following main compo-
nents :

«The sample preparation and introduction system.

*The monochromatic radiation sources, UV and X-ray.
*The preretarding electrostatic electron-lens system.
*The double-focusing hemispherical capacitor analyser.
*The electron-multidetector system.

*The computer hardware and software system.

*The magnetic shiclding system.

*The vacuum system.

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

Magnetic shields

Vacuum tank

Multidetector

CCD camera

Sample preparation

' Grating

|
Rotating anode

Figure 1. Schematic drawing of an Esca spectrometer.

Figure 1 shows the main componentsinaschematic drawing
of an Esca spectrometer.

3.3. Detector.

The electrons expelled, as described above, from the sample
are energyresolved at the focal plane of the double-focusing
electrostaticanalyser. Electron spectrometers with flat focal
planes may be equipped with multidetectors based on mic-
rochannel plates, MCP’s [14]. The microchannel plates
amplifies the single electrons into electron pulses.

In the detector system the electron pulses from the micro-
channel plates are converted into a light pulse by a phospho-
rous plate. A video camera scans the plate. The resulting
peeks in the signal are separated from noise by a discrimina-
tor circuit and can be used to increment a counter, counting
the dots on each line. For each line the result is added, by a
dedicated processor, into a buffer representing the different
physical channels in the spectrum. The buffer may later be
transferred over the communication link to the computer
system.

3.4. Program description.

The new Esca Data Acquisition and Information Handling
System, EDIS, is a single user, single instrument data
acquisition system. Several concurrent workstations such as
text terminals, graphic terminals and plotters can be used.
The interaction with the user involves techniques such as
menus, function keys, windowing and help structures.

The system can do dataacquisition from a spectrometer, The
collected data can be stored, viewed, documented, and
prepared for further processing. The data to handle is there-
fore not only spectra but also items closely related to these
spectra.

The primary task is the data acquisition and spectrometer
control/diagnostic. That partis divided into one for acquisi-
tion and one for monitoring. The two subsystems are run-
ning simultaneously with other applications in the system
allowing the user to evaluate spectra while the spectrometer
is running.

The set of parameters, defining a spectrometer run, may be
edited in a specialized editor. Old run parameters stored in
the data base can be viewed, edited and stored as new run pa-
rameters. One setof parametersare called the currentrun pa-
rameters and are used as default when an acquisition is
started.

Inadocumentation editor the user can add information to the
spectral data returned from the acquisition system.

Another option for the user is to calibrate the spectrometer
and the detector.

A help structure allows the user to retrieve application
specific or global help at all levels and applications in the
system. The help includes information about the defined
function keys. :

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

4. DESIGN AND IMPLEMENTATION

The Esca Acquisition System, EDIS, consists of several
parts. Some parts are packages other parts are groups of
packages. In the following chapters the design and imple-
mentation of the different partsin EDIS are discussed. Some
examples of the data structures and program structures are
given.

4.1. Data base system.

The database system of EDIS is acentral part for storage and
retrieval of information. Almost all of the major data types
in the Esca types packages are stored in the data base.

Input and output, 10, is provided in Ada by a set of predefi-
ned packages. We soon found difficulties using the 10
packages defined in the Ada Reference Manual [18]. The
packages for direct or sequential file storage are generic and
must be instantiated for all types used. A data base system
must handle a number of files, one for each type. Items of
record type could easily change in storage size. One examp-
le is given by:

type CHANNEL is range 0..2%*12;
type COUNTS is range 0..l1E9;
type E_VOLT is
delta 0.001 range -10_000.0 .. 10_000.0;

type SPECTRUM_ARRAY is
array (CHANNEL range <>) of COUNTS;

type LOGIC SPECTRUM (LENGTH:CHANNEL:= 0) is
racord
STEP: E_VOLT;
SPECTRUM: SPECTRUM ARRAY (1. .LENGTH) ;
end recoxd;

One can see that the element LOGIC_SPECTRUM can
change in size depending on the field LENGTH. The com-
ponent of the type COUNTS may be stored in a 32 bit word,
or 4 bytes. As the type LOGIC_SPECTRUM mainly con-
sists of the spectrum array, with a size between 0 and 4096,
the storage requirement may reach 16KB.

Early tests showed that an instantiation of the generic
package SEQUENTIAL_IOreserved the maximumstorage
size for each element on the file, independently of the actual
storage size required to save a particular element. This
storage method is powerful as elements on a file easily can
bereplaced by new larger or smaller ones without problems.
In our application items created and stored in the data base,
arerarely altered. As the variation in size between different
items is large, a method had to be developed where instan-
tiations of different data types could be stored in sequential
files, optimizing the file storage size. Items to be stored in
the data base are in memory stored as a sequence of storage

FORM TYPES I
SPECTRUM TYPES

DB_ROUTINES

DB_l0

Y
Key File I N |

Data File m | |

Figure 2. Design of the data base system.

units, bytes. Knowing the start address and the length of the
storage segment, data can easily be transferred to a file
handling sequences of bytes. With the attribute ’ADDRESS
returning the startaddress of a variable and ’SIZE returning
the number of bits that are occupied by the variable, a
generic routine can be used to store and retrieve sequences
of bytes. Problems may arise when porting the program to
other computers systems that do not represent items as se-
quences of bytes, or if the run time system is radically
changed. Another approach would be to make use of repre-
sentation specifications for the different types. For simplici-
ty in the implementation we have choosen the former
approach.

All the types handled by the data base system are referred to
by pointers, called access types in Ada. The pointers con-
tainsaddresses to the data objects. One of the main ideas was
to convert these access types to a new type, called segment,
declared as a sequence of bytes with variable length, and
letting the data base system handle the file storage of this
type. A pointer to segments are declared and a generic
function for unchecked conversions between the segment
pointer and various pointer types are defined. Thus the data
base system may handle any item type.

In EDIS we designed one generic package to handle the
conversion between the instantiated type and sequences of
bytes, and one package to handle the file that stores the
items. The separation of the generic converter and the non-
generic file handler is necessary as the file handling must be
non concurrent and a separationreduces the number of tasks
involved.

Figure 2 above shows the schematic design of the data base
system, The data base system contains two major packages,
DB_ROUTINES and DB_IO.

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

Key File

KNG AUV

KNG AUN
\ 1D ADDAESS: 108
\:::Nm =

=N
ADORESS: 106

NEXT: 108
-t LEFT RIGHT -t

08J ADDRESS

Sector Border

NN

.

Data file

Figure 3. The Key and Data files in the Data Base System.

DB_ROUTINES is a generic package for handling the
different data type. The package contains routines for sto-
ring, retrieving, locking and deleting single items. Most of
the different Esca types packages contain instantiations of
this package. DB_ROUTINES make the conversion be-
tween the item type and the segment and calls the DB_IO
package to complete the operation on the segment.

The data base system uses two different direct IO files to
store the information. One is the key file and the other is the
data file. The key file is a directory to the data file, also
containing references to all different data types objects
handled. The key file contains additional information link-
ing the objects in logical groups.

As shown in Figure 3 the elements in the key file contain
information about the data type, reference to the data file
containing the actual data element and indices to other
elements in the key file. A list of deleted elements is held in
akey list. This free list may either be used to reuse holes in
the data file orused to pack the files toreduce the unused file
space.

The data file is divided into sectors, each of equal size. A
number of segments may be stored in one sector and one
segment may cross the border between two sectors. The
reference to the data file contains both the sector index and
where in the sector the item begins. When a object is about
to be stored the data base system checks the length of the
objectand allocates the proper size within one or two sectors
to store the object efficiently. A copy of the key file is held
in memory, in parallel with the key file, giving a ram
directory”. This parallel structure gives fastaccess toindices
in the data file, thus speeding up the data base transactions.
Different structures of the ram directory” may be used.
When a new item is stored in the data base the key is added
to the key file and inserted into the ram directory. The
structure of the data base system may seem to be buildona
vary low level basis using the representation of the items and

thus introduce portability problems. We have deliberately
restricted the use of VAX ADA specific packages to enhan-
ce the portability. A full implementation of the data base
system is running without problems both on a IMB PC AT
using MSDOS and a pVAX using VAX/VMS.

As previously described all types handled in the data base
system must be access types. The data base systems maps
the pointers by assigning every objectone unique index. The
indices are calculated at the time of creation. Every object
must thus have one index with its data base ‘name’. Other
objectsreferring to another musthave anindex, for database
reference, and one pointer, for run time reference. The data
base system includes function for creating, saving, rewri-
ting, restoring, deleting elements only by referring to its
unique index.

All data base routines have a reference to which data base is
to be used. This makes it possible to use several data bases
ina system. In EDIS two different data bases are used, one
for storing system dependent objects, such asforms, and one
user data base for user specific information. The Adabase
application may temporary use more then two data bases
during data transfer.

4.2. Esca Types.

The EDIS isdesigned to have free information flow between
the different applications within the system. The data base
system, described above, is a central unit for storing and
retrieving information created and manipulated during dif-
ferent stages in the system use. A number of packages
declaring the central data types are specified. These packa-
gesare:

+ SPECTRUM_TYPES

Containing types handling spectraand itemsrelated to these.
*RUN_TYPES

Types containing run parameters and links to spectra.

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

NEXT
KIND: MASTER KIND: MASTER : Tt KIND: MASTER
NAME | DATE NAME | DATE 1 TThT T _: NAME | GATE
INFO INFO r====-=- \ INFO
MASTER LIST MASTER LIST _—.[""" |~ — = — -] MASTERLIST
NEXT NEXT) L) NEXT |
|
|
RUN TREE
KIND: ROOT KIND: ROOT : 1 KIND: ROOT
NAME | DATE NAME | DATE o7 I - :: NAME | DATE
INFO INFO [3 WFO
ROOT LIST RoOT LIST RooTusT A " "~ 3 — — -+ RoOTLIT
RUNDATA RUN DATA S | RUN DATA
ROOT DATA e 1
NEXT NEXT | \ NEXT
_____ 44
1
REGION TREE +
KIND: REGION
REGION DATA
REGION DATA]
SPECTARUM] e
|-] SPECTR
NEXT]
RUN ——— RUN MASTER
rTTTTT I)
] |
j=m - 1 |)
, Ll il a
oo Z I’“ ik —‘I
[et
| oo ke
1
1
I
KIND: REGION
REGION DATA
REGIONDATA —}
SPEGTRUM p—
NEXT L
RUN —}—— RUNMASTER

Figure 4. The run tree.

*DETECTOR_TYPES
Types containing parameters for the detector, tvlin table.

« DOCUMENT_TYPES
Containing links to run results not yet documented.

+« FORM_TYPES
Containing types handled in the form editor.

The data base is instantiated for a particular type by instan-
tiating the generic DB_ROUTINES package described in
the previous part. An application can use the types and
within the same package have access to the data base. The
Esca types packages adapt its data base handling routines to
suit the types involved. A call to the RESTORE routine in
FORM_TYPES returns for example not just one form
element but a tree representing a complete form.

The strong typing and constraint checking of Ada is very

usable in abstracting the different data types used in Esca.
The following examples will illustrate the structure of run
types and spectrum types. Figure 4 show the structure
schematically.

When designing the Esca types large efforts were made to
map the structures in the application [11]. Pointer structures
were used to represent the dynamic dependencies between
the different data types. The structure should also be used by
the data base system for searching, as the structures are
directly used in the data base. A run in EDIS is described by
a set of run parameters. Any number of run parameter sets
may be created, stored and used.

A run parameter set is represented as a tree, starting with a
master link. The master link contains the run parameter
name, the date of birth, generic information, links to the next
master and finally links to the run parameter tree. One of the
run parameters is regarded as current and is used as default

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

when the acquisitionis started. The differentrun parameters
created in the system may be viewed by traversing the
master list and displaying the names.

All run parameters and run results created with a particular
parameter set follow the master link in a run tree.

Run results created by the acquisition-subsystem are logi-
cally connected to the setof run parameters used tocreate the
result. The run parameters and run results are described ina
run list. The first root element is the header for the run
parameter list and the other rootelements are headers for the
differentrunresults derived from the run parameters. All the
root elements contain run names and birth dates and generic
information. By traversing the run list associated to a single
master all run results created from a single set of run
parameters may be viewed.

A run consists of one or more regions. Each region is.a . .

continuous part in the spectrum and can be scanned a
number of times when recorded. Inregion lists each regions
isrepresented by one element. The region elements contain
references to a resulting spectrum.

Both the root element and all the regions refer to data
elements. The root data element contains data valid for the
whole run. Region specific parameters may be added to
region data elements to alter the desired parameters. The
result from a run, a virgin spectrum, is associated to each
region. The virgin spectrum contains, beside all the spec-
trum data, areference to the master used in the creation of the
spectrum. The complete run and spectrum structure is vie-
wed in Figure 4. :

Further packages are primary type declaring, but do not
involve the data base system:

* GKS_TYPES
One part of the Ada GKS system containing all types used
to specify the GKS interface.

« HELP_TYPES
Types building the help structure.

4.3. Form Editor.

In EDIS the different applications often needs information
entered by the user. For every input situation the user fillsin
a specific form. The application may then later interpret the
result and continue. The design of the editor must be
independent of the different forms used, which may be
described in some data structure used for forms. This data
structure can be stored in the data base system and restored
when needed.

The form editor is designed to allow interaction with the
using application. When the user fills in a line marked for

MENU_HANDLER
LINE_EDITOR
FORM_EDITOR ’

[COMMAND_HANDLER

A

TERMINAL_INPUT
Application

interaction, the form editor returns to the application. The
application may scan the form and perform calculations
between different fields.

4.4, Screen.

Techniqueslike windowing are used in EDIS. The SCREEN
package was designed to be used as a utility, handling the
windows. SCREEN is a true parallel window handling
utility partly implemented in Ada, thus not completely
portable to other machines. The interface between the Ada
and the non Ada code is well defined and the non Ada code
may later be convertedinto Ada. The non Adaroutines used
is the run time library routines SMG$,Screen Management
Guidelines, in the VAX/VMS operating system.An imple-
mentation of the screen package is written in Ada and is
running on an IBM PC AT system. This screen package is
machine dependent and thus not portable to the pVAX
system as it uses the memory mapped screen for fast screen
access. The statement 'true parallel’ means that notonly the
*current’ window, but all windows may be addressed and
used at any time.

4.5. Command input handling.

Using function keys in the interaction with the user impro-
ves the user friendliness of the system. Commands can be
given with a single key instead of acommand string. When
designing the command input handling for EDIS care had to
be taken because the use of different terminal types or that
the system may run on a personal computer. Function keys
on terminals often send a sequence of characters coding the
key. One or more lead-in characters signal the presence of a
function key stroke, compared to a series of *normal’ key

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

strokes. The coding of function keys on different terminals
often differs. The command input handling in EDIS accepts,
at the present state, Digital VT100 and VT200 series termi-
nal and IBM personal computers. The command input
handling in EDIS consists of three parts, each with its
specific tasks and well defined interfaces to the upper and
lower levels. One problem in writing portable code is that
the IO operations often are operating system, OS, depen-
dent. The first and OS dependent part, in EDIS, is the TER-
MINAL_DRIVER package. The TERMINAL_DRIVER
handles input, and output, from all the concurrent worksta-
tions by assigning a handler task to each workstation. The
task typeisnamed TERM_IO. Inthe TERMINAL_DRIVER
package a structure links the terminal driver tasks. Figure 5
shows the terminal driver task data structure.

The TERMINAL_DRIVER is a generic package instantia-
ted for the type of input charactersused. InEDIS the package
is instantiated for 7-bit ASCII, however it may later be
installed for 8-bit characters when needed.

The received characters are buffered and later collected and
interpreted by the TERMINAL_INPUT package. This
package checks if the strings match any of the predefined
character sequence used. If a mach is found, that function
key is buffered and later returned to a caller. The character
sequences representing the different function keys are sor-
ted so a mismatch can be detected without scanning the
wholelist. When designing the command input packages we
discussed the need for dynamic installation of new terminal
types. We found that there was no need for this facility. As
mentioned above DEC VT100, VT200 and IBM PC are
valid terminal types. However, if a new terminal type is to
be installed in the system only the TERMINAL_INPUT
package have to be rewritten. In the TERMINAL _INPUT
the following function keys are presently defined:

type KEY SORT is (

ESCAPE, ILLEGAL, FIND,

F6, F7, F8,
INSERT, F9 F10,

F11, Fl2, F13,

Fl4, HELP, KDO,
KeyO, Keyl, Key2,
Key3, Key4d, Key5,
Key6, Key7, Key8,
Key9, MINUS, COMMA,
PERIOD, ENTER, PF1,

PF2, PF3, PF4 ,
Del, CR, IBM Home,
IBM End, IBM PgUp, IBM PgDn,
IBM F1, IBM F2, IBM F3,
IBM F4, IBM F5, IBM F6,
IBM F7, IBM F8, IBM F9,
IBM F10, IBM S F1, IBM S F2,

.IBM S F3 IBMS F4 IBM S F5
IBM S_F6, IBM S F7, IBM S FS,
IBM S F9, IBM S _F10, IBM C Fl,
IBM C F2, IBM C_F3, IBM C F4,
IBM C F5, IBM C F6, IBM C F7,

IBM C_F8, IBM C F9, IBM C_F10,
IBM A F1, IBMA ¥F2, IBMA F3,
IBM A F4, IBM A F5, IBM A F6,
IBM A F7, IBM A F8, IBMA F9,
IBM A F10, Ctrl Prtsc);

In the design of EDIS we wanted to restrict the use of
function key names in the program code, thus facilitate the
implementation of future terminal types, and to improve the
readability. A generic package, COMMAND_HANDLER,
was designed to meet these needs. The command handler
package is instantiated with an enumeration type represen-
ting the different commands. Different application may
instantiate its own command handler to map the specific
commands. The function keys and the commands are linked
via a command table. All the function keys specified in
TERMINAL_INPUT are given a command. The function
keys not used are given a No OPeration, NOP, command.
The COMMAND_HANDLER wasdesigned to handle key-
board and position sensitive screen input. Only keyboard
input is implemented in the current version of EDIS. The
following example shows how the line editor specifies the
function key to be used:

—-- Declare the different commands to be used.
type LINE_EDITOR COMMAND is (
MOVE_RIGHT, RUBOUT,
DELETE_TO_END OF LINE,MOVE LEFT,

START_OF LINE, END_OF_LINE,
READY,

INSERT_OVERWRITE TOGGLE,

HELP, NOP) ;

package LINE_EDITOR COMMAND_HANDLER
is new COMM.AND__HANDLER(
—— The used commands
SOFT_FUNCTION => LINE_EDITOR,
—-— The No OPeration key
NO_COMMAND => NOP,
HELP_FILE => EMPTY STRING) ;
use LINE EDITOR_COMMAND_ HANDLER;
-- Link the function keys to the
-- line editor command
TABLE : COMMAND TABLE :=
COMMAND TABLE' {
TERMINAL INPUT.UP => START OF LINE,
TERMINAL INPUT.DOWN => END OF LINE,
TERMINAL INPUT.RIGHT => MOVE_RIGHT,
TERMINAL INPUT.LEFT =>MOVE LEFT,
TERMINAL_INPUT.ENTER => READY,
TERMINAL INPUT. PFl =>
INSERT OVERWRITE TOGGLE,
TERMINAL_INPUT.HELP |
TERMINAL INPUT. PF2 => HELP,
TERMINAL_ INPUT.REMOVE =>
DELETE_TO_END OF LINE,
TERMINAL_INPUT. PF3 =>
DELETE TO_END_OF LINE,
TERMINAL INPUT.DEL => RUBOUT,
TERMINAL_INPUT.CR => READY,
TERMINAL INPUT.IBM F10 => READY
others => NOP) ;

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

The command handler also controls the help structure in
EDIS. The "HELP’ key may be defined toreturnacommand.
Then the application program must handle the help by its
own. If the "HELP’ key is not defined then the command
handler sends a help identifier to the help system to identify
the position in the program where help was required. The
helpidentifier is one of the parameters when instantiating the
command handler, called the HELP_FILE. The functionali-
ty of the COMMAND_HANDLER is event controlled. All
calling routines may investigate the type of input,command,
character or control character, before reading or rejecting the
actual input data.

Characters, but not strings, may be retrieved form the com-
mand handler. Further utility levels serving the applications
with line editors for string, enumeration and numeric input
can thus be build using the command handler.

4.6. Menu Handler.

In the communication with the user menus are used. A menu
is a collection of items in which the user may select one. To
prevent the spreading of detailed menu handling all over the
system, a generic menu handler was designed. The menu
handler is instantiated with an enumeration type represen-
ting the range and names of the different menu alternatives
to be handled and a NOP_KEY function. An instantiation
called the STANDARD_MENU_HANDLER instantiated
with NATURAL is often used in EDIS. To use this utility the
application builds an array containing the menu texts, When
called the menu handler fits the different alternatives into the
supplied window, with the constraint to minimize the co-
lumns. If some of the alternatives do not fit within the
window then the window can be scrolled to let the user view
the remaining menu alternatives. A default choice and two
headers are also supplied in the call. The following example
shows the use of the menu handler.

daclare
—- Declare a menu containing
--the different choices.
MY MENU : MENU TYPE (1..3) :=¢(
TO_TEXT(“Start”),
TO’_TEXT(”Stop”),
TO_TEXT(“Quit”));
—- Users choice.
CHOICE : NATURAL;
begin
—- Present the menu and let the user select
—- among the alternatives.
CHOICE :=MENU_SELECT (
MENU => MY MENU,
HEADER => TO_TEXT (“Select one item”);
SUPER_HEADER => TO_TEXT (“EDIS”);
DEFAULT CHOICE => 1,
WINDOW => MY_WINDOW) ;
—- Handle the selected alternative here.
and;

4.7. Graphic utility and GKS.

Spectralinformation in EDIS is presented in graphic form to
the user. A standard graphic utility called GKS, Graphical
Kernel System, is used.

The graphic utility of EDIS and the window handling had to
be connected in some way. We decided to choose a solution
where the graphic utility is a part of the window handling.
Graphics can be presented within a text window. For imple-
mentation simplicity we restricted the graphic window to
never be covered or occluded by another window. The
package GRAPHIC_SCREEN handles these tasks. This
package communicates with SCREEN and GKS defining
windows and viewports matching the screen windows.
Some problems arises since the GKS and SCREEN packa-
ges use different modes of the terminals, thus text and
graphic output may never run in parallel. Synchronization
with the screen package is also one of the tasks for the
GRAPHIC_SCREEN package.

The package SPECTRUM_GRAPHICS is designed for
presenting spectrum graphics. Information about the start
and end energies and the maximum number of counts are
presented in a text window and spectra in a graphic window.

4.8, Spectrometer packages and IEEE-488.

The hardware for the spectrometer is based on a number of
distributed processors all connected to the IEEE-488 bus.
The distributed system controls a video camera used as
detector, power supplies and a voltmeter. In EDIS all the
distributed services are mapped with packages, the spectro-
meter packages, having the same functionality as the distri-
buted hardware shown in Figure 6.

The package VIDEO_INTERFACE gives commands to the
video camera interface and reads data from the interface.
Dataare returned to the program in the form of logic spectra
and all transformations are performed within the package. A
package called VOLTAGE_SOURCE controls the power
supplies used. This package may serve any number of power
supplies. All the spectrometer packages uses the IEEE bus
via the IEEE_488 package.

4.9. Acquisition subsystem.

Thecentral partin the spectrometer system is the acquisition
subsystem, which controls the spectrometer, collects the
spectral data and stores the data in the data base. In the
specification of EDIS one of the demands was that data
acquisition, acquisition monitoring and useractivitiesin the
program must all run in parallel. In the design of real time
systems it is essential to detect the behavior of the different
parts in the system. The use of Ada tasks is one tool in real

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

| ESCA_PROGRAM |

[MONITOR |

| ESCA_HANDLER

AQE

AQE_KERNEL [AQE_HANDLER

/

VOLTMETER

IVIDEO_INTERFACE

[VOLTAGE_SOURGE

SPECTRUM TYPES
RUN_TYPES]

DB_ROUTINES

Figure 6. The ESCA_PROGRAM.

time programming. In the acquisition subsystem, AQE, the
following design problems arise.

To minimize the data acquisition run time the program must
serve the dedicated detector hardware constantly, starting
the acquisition and later receive the spectral data. At the
same time the collected data must frequently be saved in the
data base, assuring that data is not lost due to a general
failure.

The acquisition monitor must make asynchronous calls to
the AQE to retrieve the present AQE status. The AQE was
designed to include both the user interface, the acquisition
monitor interface and the data acquisition kernel, handling
the spectrometer and the data base storage. Figure 6 shows
the dependencies in the AQE.

Two tasksare contained in the AQE: AQE_HANDLER and
AQE_KERNEL. The AQE package specification contains
routinesfor both user communication and acquisition monitor
calls. At the start of a run the AQE restores the run parame-
ters to be used and passes the parameters to the AQE_-
HANDLER task. The AQE_HANDLER serves the acquisi-
tion monitor, the AQE_KERNEL and handles the calls to
the data base.

‘When the AQE_HANDLER receives a set of run parame-
ters, it interprets the parameters and starts the
AQE_KERNEL, passing region information to the task.
Collected data are frequently retrieved form the AQE_-
KERNEL and saved in the data base. The AQE_KERNEL
handles the spectrometer and commands the dedicated
hardware connected to the spectrometer. As previously
described the distributed system communicates over the

10

IEEE_488 bus and the system is mapped with specific
packages within EDIS.

The AQE_KERNEL task is started by passing information
aboutaregionrun. The AQE_KERNEL performs the acqui-
sition by stepping the region. For each step the AQE_-
KERNEL sets the voltage, starts the data acquisition and
receives data from the detector. Afterastep is completed the
AQE_KERNEL checks if AQE_HANDLER is waiting to
receive the spectral information collected. This check is
performed by a timed accept.

When a region is completed the AQE_KERNEL waits for
new information, describing the next region to be recorded.
At any time, after a completed step, the AQE_HANDLER
can be stopped or terminated. At termination, the AQE_-
HANDLER returns the collected data. At stop the AQE_-
HANDLER stops the run and waits for a resume command.
The user may, using this facility, temporary stop the data
acquisition.

‘When writing concurrent real time programs targeted for a
single processor system, the questions of process priority
arises. How to order the different processes, tasks, in a
system, giving them the right priority? What happens if two
tasks have the same priority, which one is running and which
one is suspended? May an important task be starved and
never able to execute? All these questions must be conside-
red. The ARM [12] gives no guidance on how tasks should
be interleaved on a single limited processor. In order to mi-
nimize tasks switching many implementations will choose
the following algorithm. A task, once it is executing on a
processor, will continue to execute until itisno longer in the
state of ’executable’. Task switching will not occur until the

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

executing task will change its state by :

completing its execution,

executing a delay statement,

executing an entry call,

elaborating a sub-task,

executing an accept statement upon witch no entry call
has been made,

« executing a select statement in witch there is no else part
and no outstanding entry calls on any open select alter-
native.

e o o o o

An interrupt entry into another task is the only exception to
this rule. When assigning priority to the involved tasks the
following rule, stated in the ARM, stands.

"If two tasks with different priority are both eligible for
execution and could sensibly be executed on the same
physical processor and some physical resources, then it
cannot be the case that the task with the lower priority is
executing while the task with the higher priority is not".
(ARM 9.84)

In VAX ADA, task switching is performed in the ways
described above. When switched, tasks with the same prio-
rity are executed in a first-in-first-out order. To allow
additional control over the task scheduling, VAX ADA
provides the pragma TIME_SLICE. This pragma causes the
task scheduler to limit the amount of continuous time given
to a task when other tasks of the same priority are also
eligible for execution. This pragma is a non-portable featu-
re.

In EDIS the AQE tasks is given the highest priority, letting
the data acquisition run at full speed. The AQE_KERNEL
have a stightly higher priority than AQE_HANDLER. This
allows the AQE_HANDLER frequently storecollected data
in the data base, while the AQE_KERNEL is waiting for the
detector to transmit data. Next in the priority list is the 10
tasks, handling the user terminal IO operations. It is desira-
ble that user input is acknowledged by the applications as
fast as possible. Some of the tasks used in user applications,
like the acquisition monitor and the clock, run with aslighter
higher priority than the main program

4.10. Acquisition Monitor.

The acquisition monitor is a user application showing the
state of the data acquisition subsystem. The acquisition
monitoris also used to view the collected data in the various
regions under investigation. The monitor runs in parallel
with other activities in the system.

The acquisition monitor was designed to work in two
modes. One mode is the interactive mode where the user is
communicating with the acquisition monitor, investigating

11

the state of the data acquisition subsystem and viewing
spectral data. The other mode is the background where the
monitor frequently updates a window, presenting the cur-
rent status of the acquisition subsystem. In the background
mode the user is free to run any application in the foreground
and still view the monitor information.

The acquisition monitor, MONITOR, calls the AQE pack-
age for both status and spectral data. While calling the AQE
package the caller may hang waiting for the AQE_-
HANDLER and AQE_KERNEL torespond to acall. Utili-
ties like the SPECTRUM_GRAPHICS are used to present
the spectral data to the user. In the monitor a task was
designed, handling the concurrency both in the foreground
mode and in the background mode. This task is named the
AQE_MONITOR task. This task is both started and stopped
by commands form the user, given in the MONITOR
package. When the AQE_MONITOR is started a window is
passed to the task to be used for output.

Thedifferent windows used by theuser applications in EDIS
iscontrolled by the ESCA_HANDLER package. This pack-
age routes the calls form the main procedure, ESCA_-
PROGRAM, down to the user application packages. In
Figure 6the ESCA_PROGRAM andthe ESCA_HANDLER
are shown. The package handles three windows, the main
window, the clock window, and the monitor window. In the
main window all the different applications, except the
monitor, are executing. The monitor and clock window
holds these specific applications. The Esca handler changes
the size of the different windows when different applica-
tions are called. The Esca handler also manages the stacking
order of the these windows. The clock window is always the
top window, followed by the monitor window and finally
the main window. The Esca handler is the initiator and
terminator in EDIS. When EDIS starts, the Esca handler
package opens the data bases, activates the IEEE 488 bus
and shows any system messages to the user.

5.CONCLUSIONS

When this project started the use Ada as a language for
software production had merely started. The group had very
little experience in real time programming in Ada.

Three different Ada compilers have been used (TELE-
SOFT-ADA, Alsys Ada 1.0- 3.2, and the VAX ADA 1.0 -
1.5). Thereis asignificant increase in productivity using the
later versions of the compilers. The TELESOFT-ADA
compilers we used in 1985 could hardly be used forlearning
Ada. The lack of commercially available software compo-
nents is still a drawback, comparing Ada to other high level
languages, when implementing small to medium sized sy-
stems. This has changed, to some extent, in the recent year.
Designing and implementing nearly all basic utilities in
EDIS has slowed down the development. Using Ada as a

A Data Acquisition and Information Handling System in Ada for Electron Spectroscopy.

language for design and implementation of amodern, distri-
buted, data acquisition system is however a good choice,
becoming better and better. The modularity, reusability and
the readability are great advantages compared to FOR-
TRAN. In a laboratory environment an acquisition system
must be easy to modify. New measurement methods and
equipment must be incorporated in the system by scientists
not primary involved in the development of the system. The
modularity of the system, if designed in a proper way, may
support quick modification.

The behavior of Ada for support in system design and
project management is primarily found to be a question of
compiler environment. Ada programming supportenviron-

ments are now becoming available. These environments -

include, beside compilers, editors and debuggers, design
aids, configuration managers and project coordination tools.
This field often called CASE, Computer Aided Software
Engineering, is desperately needed and fast growing. Auto-
mated software development is one way to fight the rising
costandextended delays called the software crisis{13]. Ada
itself withits specification-implementation separation gives
the basic support for central design and decentralized imp-
lementation. The standardized Ada Programming Support
Environment, APSE, may not be presented in a number of
years, as the field is not yet convergent.

The VAX ADA compiler with its ACS library handler is a
manageable system for medium sized projects.

The portability of Ada programs is a subject for long
discussions. We have found that the low level IO handling
nearly always ends up in non-portable code, as was the case
with former high level languages. The tools for dataabstrac-
tion and information hiding give ways to restrict the sprea-
ding of non-portable features over the whole system.

The non-portable features may then be rewritten to fit the
new target system. The standardized tasking mechanism in
Ada gives a way to use parallel structures in a portable way.
The upper utility and application levels may thus freely be
ported.

The VAX ADA compiler provides a set of non-portable
features. This is possible and still following the ARM. A
command in the ACS system lets the user check the porta-
bility of a Ada program complied with the VAX ADA
compiler. It is often tempting to use the nice non-portable
features in VAX ADA, and this is in some cases done,
hopefully with care.

The behavior of Ada as a real time programming language
in a medium sized system must be regarded as good. The
Ada language gives the possibility to design and follow the
nature of the system to be controlled.

6. REFERENCES

[1]1 T.Bergmark and E. Basilier,
Uppsala University Institute of Physics Report,
UUIP-846, 1974
[2] E.Basilier,
Uppsala University Institute of Physics Report,
UUIP-1022, 1980.

J. Nordgren, R. Nyholm and L. Pettersson,
Ann. Reg. Sci Acta Upsaliensis, 23, 96, 1980.

B3]

[4] Hans Veenhuizen,

Uppsala University Institute of Physics Report
UUIP-1100, 1984

[S] L.Asplund,

Uppsala University Institute of Physics Report,
UUIP-1073, 1983.

[6] K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg,
K. Hamrin,J. Hedman, G. Johansson, T. Bergmark,
S.E. Karlsson, I Lindgren and B. Lindgren,

ESCA Atomic,molecular,solid state structures studied
by means of electron spectroscopy,
Almqvist & Wiksell, 1967.

[7] K. Siegbahn, C. Nordling, G. Johansson, J. Hedman,
P.F. Hedén, K. Hamrin, U. Gelius, T. Bergmark,
L.O. Werme, R. Manne and Y., Bear,

Esca applied to free molecules,

North-Holland Publishing Company, 1969.

(8]
(9]

B. Lindberg, Kemisk Tidskrift 6, 1983.

U. Gelius, L. Asplund, E. Basilier, S. Hedman,
K. Helenelund and K. Siegbahn
Nucl. Instr, and Meth. 85-117 1984.

[10] E. Basilier,
Uppsala University Institute of Physics Report,
UUIP-1021, 1980.

[11] L. Asplund, K.Helenelund, M. Carlsson
and A. Gisslén,
Uppsala University Instituteof Physics Report
UUIP-1137,1987.

[12) Reference Manual for the Ada Programming
Language, (ANSI/MIL-STD-1815A),
Ada Joint Program Office, Department of Defense,
Washington, D.C., 20301, 1983,

{13] W.Suydam,
Computer Design, January 1, 1987.

12

