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Abstract

A high resolution, monochromatized Hellor, photoelectron spectrum of
the 5s correlation satellites in Xe is presented. Approximately 70 new
lines, previously not observed in photoelectron spectroscopy, were
assigned using optical data. It is found that the dominating lines in the
spectrum are associated with levels of high angular momentum.



Introduction

The photoelectron spectrum of Xe has been studied extensively in the past years. In
1974 Gelius [1] presented a monochromatized XPS spectrum containing a number of
correlation satellite structures associated with the 5s line in Xe. These structures are due
to the excitation of different final ion states resulting from electron correlation effects.
The XPS spectrum has recently been improved by Svensson et al [2] and reveals fifteen
correlation structures in the energy region between 24 and 33.5 eV binding energy.
Hell excited spectra presented by Siizer and Hush [3] show eight correlation
structures. A number of satellites were observed between 26.3 and 27.6 eV which
could not be assigned to the J=1/2 levels of even parity used in the interpretation of the
XPS spectra. Their spectrum is taken at high resolution, but with a poor signal to
background ratio. Investigations using synchrotron radiation have been published by
Fahlman et al [4] and Adam et al [5]. These studies are made in the region of the
Cooper minimum, which occurs at about 33 eV. Synchrotron radiation studies have
also be reported by Brion et al [6], covering 33 lines and structures in the energy region
between 21.6 and 34.4 eV binding energy. Furthermore, Brion et al report the
occurrence of one peak below the Ss peak, at 23.397 eV, and two CI states below the
first single-particle shake-up state. However, satellites of low intensity were not
observed. The purpose of their studies was to investigate the intensity ratio of the
strong lines and the B parameter values of the satellites as functions. of the photon
energy. These investigations show a strong excitation energy dependence of the 5s
satellite lines.

The assignments of the photoelectron spectra have mainly been made by comparison
with optical energies given by Moore [7] and Hansen and Persson [8,9]. The
interpretation has previously been difficult due to the fact that several states fall within
the same structures in the spectrum. Also, only J=1/2, even parity satellites were
considered by Hansen and Persson in their analysis of the photoelectron spectrum of
Gelius [1]. Hansen and Persson have suggested that this is correct for high excitation
energies where the final ionic state configuration interaction is the dominating
mechanism of the 5s electron excitation. These authors also proposed that, at low
excitation energies, the satellite spectrum is probably due to “ionization in the Sp shell
and is associated with excitations to the 5s25p# 6p, 7p and possibly also with 4f final
states”, i.e. a conventional interpretation in terms of shake-up and conjugate shake-up.

In the present study, a new photoelectron spectrum of the 5s correlation satellites in Xe
has been recorded using monochromatized Hello radiation. A survey spectrum is
shown in figure 1, and the inner valence region is shown in greater detail in figures 2-
4. The latter spectrum shows a large number of resolved lines and structures with
binding energies in the region between 23.4 and 35.0 eV. Almost every line can be
assigned using the optical energies given by Hansen and Persson. If this interpretation
is adopted it turns out that the J=1/2, even parity states are not dominating at the
excitation energy of Hello (40.8 eV). On the contrary, states with high J quantum



numbers such as J=9/2, 7/2, 5/2 and 3/2 are seen to be present within the same range
of intensities as the J = 1/2 states in the spectrum.

Experiment

The spectrum presented in this work was recorded using a dedicated gas phase
photoelectron spectrometer. The instrument has been described elsewhere [10]. The
exciting Hell radiation was produced by a microwave discharge ECR lamp [11]. The
important feature of this lamp is that it gives a very high Hell intensity and works at
much lower He pressure than conventional VUV sources. The radiation was
monochromatized using a newly designed monochromator for Hell [12]. The purpose
of the monochromator is to eliminate the intense Hel radiation. In combination with a
system of light baffles, it also serves to reduce the background caused by scattered
radiation and photoelectrons emitted from the walls of the sample cell.

The Xe gas was commercially obtained and has a purity of 99.995% . The pressure in
the gas cell was held at approximately 20 mTorr. At this pressure, inelastic scattering of
 the electrons is negligible. The photoelectron linewidth was approximately 50 meV
(FWHM). This width is mainly limited by the analyzer resolution at high pass energy
(50eV) used to obtain the full spectrum within a resonable time.

The ECR lamp used in this study produces, besides the Hella line, a number of other
radiation components [13]. Some of these components, of low intensity compared to
the HeIlo line, fall withing the energy window defined by the monochromator and give
rise to weak satellite structures in the spectra. One may note that even the HelIp line is
not completely eliminated by the monochromator. The other Hell satellites lines of
detectable intensity in the Hella region are the 320.29A and 305.76A lines.
Furthermore, the Helot,B,Y,8,€ lines are still observable the spectrum. This is mainly
due to diffuse scattering of the radiation at the grating.

No appreciable impurities, besides the helium gas leakage from the ECR lamp, were
detected in the spectrum. A small signal resulting from excitations to the X state in the
H,0 cation was detected in the 12.5 to 13.0 eV binding energy region. However, this
impurity gives a negligible contribution to the 5s correlation satellite spectra above the
5s main peak.



Results and discussion

The spectrum presented in figure 2 reveals, due to its high resolution and good signal to
noise, a large number of states not observed in previous photoelectron spectra of the 5s
correlations satellites in Xe. The peaks of the spectrum have been analyzed by fitting
gaussian line shapes. The method of analysis and the tools used have been described
elsewhere [14]. The line positions, line widths, relative intensities and assignments are
presented in table 1. The assignments presented in table 1 are based on the optical
energies and assignments made by Hansen and Persson [9]. No assumptions as to final
state symmetry or selection rules of the transitions have been made.

The resolution of the spectrum is about the same as in the earlier Hell excited spectrum
[3], but the signal to noise ratio is greatly enhanced, due to higher Hell intensity,
reduced scattering and a lower sample gas pressure. The main 5p3js,1/2 lines have a
line width (FWHM) of 47 meV. The line width of the 5s line is 59 meV. The signal to
background is about 10 : 1 in the 5p3/; peak.

The interpretation of the correlation spectrum is rather straightforward in the region
above the 5s main peak, at 23.397 eV, up to about 29.3 eV. Above this limit, a number
of states fall within unresolved structures of the spectrum. In this region we have made
a single gaussian fit to each structure and in table 1 we list all states that have binding
energies that according to optical data fall within that particular structure.

The optical energies and assignments, made by Hansen and Persson, are supplied up to
the 5s25p4(3P1)5g state at 32.136 eV. Therefore, no assignments have been made
above this limit. However, from the spectrum it is clear that the correlation satellite
states continue up to at least 35 eV. This is obvious also from the XPS given in ref.
[2]. An estimation of long range variations in the relative intensities of the structures in
the region above 30 eV is very uncertain, since the spectrometer transmission function
is not accurately known under the conditions used when this spectrum was taken.

The dominating lines in the present spectrum are found to correspond to the final states
(3P)6p 2D3/2, 52 (27.539 eV), (ID)5d 2D3/2 (27.942 eV), (ID)5d 2G9/2, 712 (26.374
eV), (ID)5d 2Fs (26.895 eV), and (3P)5d 4Py (25.265 eV), in order of decreasing
intensity, ¢f Table 1. These lines were also observed in the previous spectra recorded
at, or near, the Hello excitation energy [3,4].

According to Hansen and Persson, the transition to the 5s25p4(1D)5d 281 level
should give rise to a strong feature at about 28.876 eV in the photoelectron spectrum
due to strong interaction with the 5s5p® 21/, level. In the XPS at 1487 eV this line is
also dominating in the satellite region. The line is not resolved in our UPS spectrum
due to overlapping lines resulting from the 5p3/2 line excited by the Held line.
However, it is obvious that this line is weak in the UPS spectrum, cf figure 2. Thus it
seems that the higher angular momentum components of the (1D)5d configuration
acquire the highest intensity in the Hell excited spectrum. This may suggest that



electron correlation in the initial state plays an important role for the photoelectron
intensities in this case. This possibility was discussed also by Fahlman ez al [4].

As mentioned above, Brion et al have reported a number of unassigned peaks below
the energy of the first single-particle shake-up state associated with 5p ionization. These
peaks were found at 22.52, 23.7 and 23.95 V. The present spectrum contains several
unassigned peaks below the main Ss line. The strongest of these peaks, at 22.54 eV (cf
figure 2), coincides with the peak observed by Brion ez al . The structures observed by
Brion et al around 23.7 and 23.95 eV, are in the present study assigned to excitations
of the 5p electron, cf table 1.

Conclusions

The presented high resolution spectrum of the 5s correlation satellites in Xe shows a
good correspondence with the optical energies given by Hansen and Persson. In this
assignment it is found that transitions to jonic states with high angular momenta tend to
dominate in the spectrum. To assign the states above 29.3 eV, an enlarged theoretical
study of the 5p excited ion states has to be performed. In some cases, more conclusive
assignments might also be made after some measurements at the higher spectrometer
resolution recently obtained.
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Fig. 1. = A survey high resolution photoelectron spectrum of the Ss correlation
satellites in Xe. The recording time for the spectrum was approximately
15 min.
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Fig. 2. Adetail of the high resolution inner valence photoelectron spectrum of

Xe between 22.0 and 26.5 eV. The recording time for the whole inner
valence spectrum presented in figure 2-4 was approximately 10 hours.
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A detail of the high resolution inner valence photoelectron spectrum of
Xe between 26.0 and 30.5 eV.
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A detail of the high resolution inner valence photoelectron spectrum of

Xe between 30.0 and 35.5 €V.

Fig. 4.
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