Daniel Wengelin
Swedish Defence Research Institute
§-102 54 STOCKHOLM, Sweden

Mats Carlsson Githe, Lars Asplund
Uppsala Unversity
S-75121 UPPSALA, Sweden

Abstract Using a source code transformation approach to Adain adistributed environment will give some
implementation difficulties. This paper presents an all Ada, portable, solution to the problem of
suspending a caller on one node during a call to aremote node. The solution is based on two sets of tasks
on each node, making it possible for a caller to hang on an entry during the call. Algorithms are presented
in pseudo-Ada.

1 Introduction

Duringrecentyears, much effort hasbeen putinto the area of Ada ondistributed targets. Several papers [Cor84, AMNSS,
CWAB89, BAP87] focus on the possibility to use standard compilers. This can be accomplished by means of a
preprocessor, that translates one Ada program into a set of Ada programs. The transformation is controlled by some
partitioning information.

One difficulty observed [EJK89] in the transformation is how to avoid the use of busy waiting during calls to a remote
node.

2 A system structure to avoid busy wait
Consider the following example.

The hardware consists of a two node network. The program to be run is basically a task on one node calling a procedure
on the other node. The task is to be suspended during the execution of the procedure.

The transformation of the source code will include the adding of code to handle the distribution and interface the network.
We assume that there is a package DISTRIBUTED_MAIL dealing with the interface. The package will declare a task
type, MESSAGE_HANDLER (M_H), and aresource pool to hold objects of the task type. The package will also declare
aRECEIVE procedure and a SEND procedure. A generic package, declaring a RECEPTOR task type, will be used. A
pool of RECEPTORs is also held on each node.

The MESSAGE_HANDLER algorithm is

loop
— Get a call from application
accept FORWARD (inparameters, addressee, mypointer)
— Send message over the network
SEND (inparameters, addressee)
~ Wait for a RECEPTOR to call on reply message to me
accept REPLY (outparameters)
— Accept final call from application
accept READ_REPLY (outparameters)

end loop

The RECEPTOR is implemented as

loop
— Queue on network port for (request) message
RECEIVE (inparameters, addressee, frompointer)
— Perform actual call
FORWARD_TO (inparameters, addressee, outparameters)
— Put reply message back on network
SEND (outparameters, frompointer)

end loop

The RECEIVE procedure gets a message from the network. It is implemented to return control to the RECEPTOR only
when a request from another node arrives. If the message received is a reply to some earlier call from a message handler
on the local node, this message handler will be called. The following statements are found in the RECEIVE procedure.

GET_REQUEST : loop
GET_FROM NETWORK (message)
if message.IS A REPLYthen
message.FROM HANDLER.REPLY (message . OUTPARAMETERS)
else
exit GET_REQUEST
end if
end loop GET REQUEST

The transformation of the original program will include substituting the procedure body on the calling node. The stub
will perform the following algorithm.

GET_A_MESSAGE_HANDLER (apointer)

PACK_INPARAMETERS (..., inparameters)
apointer.FORWARD (inparameters, addressee, apointer)
apointer.READ REPLY (outparameters)
UNPACK_OUTPARAMETERS (outparameters,...)

The RECEPTOR task will be used as follows. On each node, apackage DISTRIBUTE is added during the transformation.
The package specification is empty, but the body includes several vital components. First, a procedure TO, which will
take a call, identify the addressee, unpack the inparameters, perform the call, and pack and return the outparameters.
Second, an instantiation of the generic RECEPTOR package, using the TO procedure as the generic actual to the
FORWARD_TO procedure. Finally, the package includes a resource pool for objects of the RECEPTOR task type.

The structure of a remote procedure call can be seen in fig. 1. The numbers denote the data flow sequence . Also in the
figure are numbers indicating the order in which the M_H accepts rendezvous and the RECEPTOR makes its calls.

During a call, the following happens; the task will make an ordinary procedure call(1), executing the substituted
procedure body. AM_H task will be obtained, and the actual parameters of the call will be transferred by arendezvous(2).
The calling task will then suspend itself, by means of a call to the READ_REPLY entry denoted 3", Meanwhile, the
M_H passes the call onto the other node(3,4), where the call is caught by a waiting receptor(5,6). The receptor recognizes
the call and performs the actual call through the FORWARD_TO procedure(7). At return(8), a reply message will be
created and sent(9) back to the requesting node. There, another receptor will pick up the message through a call to
RECEIVE. InRECEIVE, the message is recognized as areply(11). Hence, the M_Hpointer is extracted and the waiting
M_H s called(12). This will cause the release of the M_H, the acceptance of the READ_REPLY entry(13), and hence,
the release of the application.

NODE_1 NODE_2

DISTRIBUTED

[oxm]
14 |1

SERVER_UNIT
FORWARD_TO

12 3 NEW_RESOURCE
KILL

MESSAGE _
HANDLER

NEW_RESOURCE
KILL

MESSAGE_
HANDLER

—

RECEIVE H SEND

RECEIVE || SEND

RECEIVE SEND

=7

ET—"
RECEIVEH SEND

Figure 1. Data and control structure in a remote call in DARTS
2

3 Conclysions
There is a not very complex, all Ada, portable, way of having callers on one node suspended while their request is
processed on aremote node. Ithasbeen tested and proven feasible, and is now undergoing further refinement and testing.

4 References

[Cor84] D Cornhill
Four approaches to partitioning of Ada programs
for execution on distributed targets
IEEE Computer Society Conference on Ada
Applications and Environments

[BAP87] J M Bishop, S R Adams, D J Pritchard
Distributing Concurrent Ada Programs by Source Code Translation
Software- Practice and Experience, Vol 17(12), 859-884 (Dec-87)

[AMN88] C Atkinsson, T Moreton, A Natali
Ada for Distributed Environments
Cambridge University Press, 1988

[CWA89] M Carlsson, D Wengelin, L Asplund
The Distributed Ada Run-Time System, DARTS
Uppsala University Institute of Physics Report, UUIP-1213
Uppsala University, Institute of Physics, P.O.Box 530
S-751 21 Uppsala, Sweden

[EJK89] G Eisenhauer, R Jha,] M Kamrad I
Targeting-a Traditional Compiler to a Distributed Environment
Ada Letters, Vol IX(2), 45-51 (Mar/Apr-89)

