INTEGRATED CHARGE SENSITIVE ELECTRON DETECTOR
FOR ELECTRON SPECTROSCOPY

by

Mats Carlsson Gothe, Lars Asplund,
Carl-Johan Fridén and Méns Lundquist.

Institute of Physics, Box 530 S-751 21 Uppsala, Sweden.

Abstract

A new integrated, charge sensitive, multi-detector is pre-
sented. The detector consists of metal charge collecting
plates, high gain amplifiers and coded, readout electro-
nics, all integrated on the same chip. Design, simulations
and layouts are discussed. The detection threshold is less
then 108 electrons/pulse and the space resolutions is 0.15
mm.

1.INTRODUCTION

The use of position-sensitive-detectors, PSDs, has in the
last yearsbecome an integral part in many spectroscopical
methods. The PSD technology has diverged in a number
of different measurement techniques [1]. In 1984 we
presented a concept on how an integrated multiple-anode
electron detector can be realized [2]. This PSD consisted
of 5*10 mm? chips placed side by side forming a 120*12
mm? detector. A resolution of 150pm in two dimensions
were suggested. Further work aiming to implement this
circuit has been carried out by the Department of Electro-
nics at the Institute of Technology in Uppsala [3]. This
work has resulted in simulations, layout and manufactu-
ring of a small test circuit.

Magnetic shields

Vacuum tank

The purpose of this project is to explore new concepts of
PSDs, to improve the previous designs, and finally to
evaluate the replacement of the existing detector equip-
ment used at our institute for the electron spectrometers.

Inthis paper drawbacksin the previous designs are discus-
sed. Suggested solutions, new simulationsand designs are
presented.

2. THEORY
2.1 The current detector used.

The PSD discussed in this report is intended for use in
electron-, ion fragment- or Auger spectroscopy. In these
applications, radiated samplesejects electrons by the pho-
toelectric effect. The radiation may range from UV to soft
X-ray. The energy of the emitted electrons are measured
inan ESCA spectrometer by electron deflection inanelec-
trostatic, hemispheric, analyser [4]. Figure 1 shows the
principles of an ESCA spectrometer. Electrons with diffe-
rent energy are position resolved at the detector. The
higher energy electrons are deflected towards the outer

____Sample preparation
}Grating

\
Rotating anode

Figure 1. ESCA spectrometer.

1

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

Gnd

Figure 2. The current used detector configuration.

radius of the electrodes, the lower energy electrons to-
wards the inner radius. It is difficult to directly detect
single electrons, so they have to be multiplied.

Inthe currently used detector arrangementthe Microchan-
nel Plates, MCPs, in conjunction with a phosphor screen
produces a visible scintillation for each electron [5].
Figure 2 shows the different parts in the current detector
configuration. The MCPs in pair have a gain of 10° to 10%.
Higher gainrequires longer recovery time, as the channels
in the MCP can be regarded as charged capacitors. The
gain therefore effects the dynamic range of the detector.
Under normal gain conditions, 105, the recovery time for
one channel is about 0.1s. One can see that the channels in
the MCPs are tilted 13° relative to the normal of the MCP.
The second MCP is rotated 180° with respect to the first
plate so that the angle between the two plates becomes
26°. This is a standard way of mounting MCP pairs to
reduce the ionic feedback from the second plate to the
frontside of the first plate. The phosphor screen is scanned
byaCCD videocameraso oriented thateach scan line cor-
responds to a certain electronenergy. The peaks in the
video signal are used to increment a counter. A dedicated
processor reads thecounterand adds the datatoa spectrum
buffer. The spectral data is later transferred to a host
computer system [6]. Despite the isolated detector moun-

ting and the high vacuum conditions in the spectrometer,
flash-over between the MCPs or the 2nd MCP and the
phosphor may occur. This is not critical in the current
detectors but may be an important restriction when using
the integrated detectors discussed. The currently used
detector system allows a maximum overall counting rate
of 10* - 10° counts per second, provided that the intensity
is uniformly distributed over the detector surface. In a
single channel the usable count rate is less than 1000 per
second.

2.2 The integrated electron detector.

In detector technology it is desirable to integrate the
detector system and the readout electronics onto the same
monolithic chip. Integration gives the benefits of resolu-
tion enhancement, size and price reduction, and high
reliability. The progress in integration techniques has
made this possible. However, some silicon detection
techniques are hard to integrate on the same chip due to
compatibility problems. Substrate doping, lattice orienta-
tion are two examples where the silicon strip detectors and
the circuit integration has opposite requirements for opti-
mum performance [7]. Inter-connections between high
density detector and amplifier chips introduce advanced
bonding techniques [8]. To increase the active area in a

Metal Plate

High Gain Amplifiers

Row Reset

Reset

To Readout Electronics

Figure 3. A schematic detector cell circuit.

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

detector circuit,and to minimize the interconnections, it is
desirable to integrate the detector and readout electronics
under the active elements. However, large detector areas,
120*12mm?, would result in a very low yield when trying
tomanufacture thesecircuits. To increase the yield, detec-
torsmay be produced in smaller, identical, chips. Detector
chips can then be mounted on a substrate in a matrix
structure with repeated interconnections between the chips.
If the connections are made at a higher coded level, rather
than at detector cell level, the number of bonds may be
reduced.

The new integrated detector is a charge sensitive , high
gain, amplifier with digital, addressed, readout. The de-
tector cell consists of a metal plate, acharge amplifier and
readout electronics. Figure 3 shows a schematic detector
cell circuit. The metal plate and the bulk material in the
semiconductor forms a capacitance of about 0.02fF/pm?.
The 150*150pm metal plate gives a total capacitance,
€, 0f 0.45pF. When charged by an electron pulse, g,
the plate drops in potential q,,, /C,,. This small voltage
difference is amplified to digital signal levels by the high
gain amplifiers connected to the plate.

A high gainamplifier can beconstructed using two CMOS
inverters in series. By adjusting the channel length or
width in the inverters, the logic transition levels may be
varied and the proper gain can be set. The transition level
of the first inverter is set slightly below the second
inverter. In figure 4 the characteristics of the two inverters
are shown. The differences in transition levels are greatly
exaggerated. A transmission gate connects the input and
output of the first inverter and resets the amplifier into its
active regions when opened. The first inverter enters a
state where V, =V _ . This state is in the high gain region
of the inverter, The adjustment of the firstinverter sets this
state just below the transition region of the second inver-
ter. A small voltage drop on the input of the first inverter
is amplified which makes the output just pass the transi-
tion level of the second inverter. Figure 5 shows the amp-

First inverter

Vout Vin = Vout

First inverter

/|

Second inverter

[\S

n

Figured. The adjusted inverter
characteristics.

lification. The detector element is not active again until it
has been reset.

As previously mentioned the inverter modulation may be
achieved by eitheradjusting the channellength or width in
one of the transistors. The choice between length or width
variation turns out to be important.

In normal digital CMOS application the power consump-
tion is very low as the transistors are complementary and
only one is open at a time. Current is therefore only
flowing the short time when the gate is shifting from one
state to the other. In the detector this is not the case. As
shown in figure 5 the active region of thefirst inverter is
where both the transistors are partly open. In this state the,
constant flowing, current through the inverter must be
considered. An increased channel width gives an increa-
sed current, while an increased channel length gives a
decreased current. As a full detector circuit consists of a
vaste number of detector cells, all in power consuming
states, the overall current must be simulated and calcula-
ted when evaluating the usefulness of the circuit.

Second inverter

Y
Plate voltage drop n

Figure 5. Transition of the two inverters at reception of an electron pulse. After a reset opeara-
tion the firs inverter enters the V, =V __ state. This voltage is just below the transition
level of the second inverter. A small input voltage change on the plate, due to an
electron pulse, is amplified and raises the input of the second inverter just above the

threshold.

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

2.3 Readout Electronics

The principlesof thereadout electronics has been changed
since the first proposals and implementations of the detec-
tor circuit [2,3]. Instead of a shift register, as in the
previous designs, a coded bus is used. The bus is a 'wired
OR'-bus. When a count is registered, a READY strobe
signals the appearance of an unique row, Y, and column,
X, pixel-address on the bus. As the detector circuits are

B

identical and the readout electronics are regular, the cir-
cuit may easily be extended, both in hight and width. The
presentlayoutconsists of a 16 * 16 matrix of detector cells,
giving a 4 row and 4 column bit bus. This structure of the
readout electronics gives fast output but introduces new
problems. If two or more detector elements generates a
ready strobe at the same time, the data is corrupted.

gl
T,

S i
w i

amy__-é-:-r-l

Address X-15,9-1

L

From detector cell

Address X-15,Y-0

T

i E- v adtoss

ﬂg —
o
ks

Al i —

Al i .

HEEERTR R

Ready
Y3
Y2
Yi
Yo

Y3
Yz
Y1
Yo

Figure 6. The readout electronics.

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

2.4 Reset network.

After a count has been detected, the detector cell must be
reset. The reset pulse is given by the connecting hardware
and is distributed by the, on chip, reset network.

The reset network performs two tasks, chip reset and row
disable. Row disable may be used for disabling erroneous
rows or to mask off parts of the detector.

Thereset network consists of a static shift register, holding
the row disable signal, and OR gates selecting either the
row disable or the chip reset signal. Figure 7 and 8 shows
the resetnetwork. The external hardware controls thereset
network through four connections, CHIP_RESET,
DATA_IN,CLOCK andinverted CLOCK. The new detec-
tor gives the possibility of 2D detection. The connected
hardware can convert the 2D information to energy lines
though a 'look-up’ table.

 ———

CLK
ClK Q@

Fc

CLK
CLK Q

7y

F,

CLK @

Row Reset
:) >—

Clock Clock Dataln Chip Reset

Figure 7. The reset network.

2 :

CLK

Figure 8. The static D-latch design.

2.5 Detector mounting.

The new integrated detector introduces a partly new
mounting. As the new detector directly may detect the
amplified electron pulses, the phosphor becomes obsole-
te. The new mounting is shown in figure 9. In the previous
mounting, shown in figure 2, the accelerating field be-
tween the 2nd MCP and the phosphor have a small
focusing effect on the electron pulse. The new detector
does not tolerate this high voltage. The spacing between
the MCP and the phosphor must be held to a minimum,
reducing the divergence of the electron pulse. The spacing
must, however, be large enough to allow for the bond
wires.

3.RESULTS
3.1 Simulations

In order to gain knowledge on the behaviour and various
parameters of the detector cell, we simulated the circuit
using the SPICE simulation program [9]. The simulation
has been modeled firstly by a pulsed voltage source con-
nected via a small capacitor to the input plate capacitance
and secondly by a pulsed current source with equal re-
sults. Figure 10 shows the pulsed current source model.

The design goal for the detection limit was 10 electrons.
This gives a voltage drop of 300mV on the 0.5nF detector
plate. In the simulation model a pulsed current source
giving a 160pA, 1ns pulse simulating the 106 electrons.

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

Gold Mesh

1st MCP

2nd MCP

108 Electrons

Detector

Figure 9. The mounting of the new integrated detector.

The amplification is set by adjusting the channel width or
length of the transistors in the charge sensitive detector
inverters. The degree of variation was determined by si-
mulating the detector cell with various adjustments. The
proper relation was found to be a complementary channel
length of 15 to 3. The various lengths and widths are
shown in figure 11. The current in one detector cell was
found to be 13.5pA. This gives a power consumption of
65pW per cell. Thus, an 1024*16 detector would give a
total power consumption of approximately 1W. Previou-
sly we stated that adjusting the width would increase the
power consumption. Simulation shows that the current
increases to 149pA. This would result in a 10W chip
whichis totally unacceptable and shows the importance in
observing this property.

The simulation showed well known effectsnotdiscovered
in the previous simulations performed [3]. When the
transmission gate is opened the detector input is affected.

The input may easily swing 60mV which is 20% of the
minimum detection level. This is a capacitive effect pro-
duced by the voltage step applied to the two transistors,
when opening and closing the transmission gate. The two
transistors does however producea complementary volta-
ge swing. The swing amplitudes are not the same as the
geometry may vary between the two transistors. By
modulating the transmission gate, different amount of
charge may be stored in the transistors and the effect may
to some extent be balanced. Simulations showed a proper
transmission gate width modulation of 2 to 1.

The simulations showed that the reset gives a time lag of
30ns before the detector is prepared for detection. A delay
time of 50ns in the detector circuitand 65ns in the readout
electronics. This gives amaximum counting frequency of
6MHz.,

Reset

L

Tz
el
T

l—-|
i

nd

o

H Voo

rl
!

,||_T_'I'T__T'LT_,

L
I

ﬁ
L

To readout electronics

r—l
.
1.

Figure 10. The simulated model.

6

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

7]
'I\;r.:buu"v‘n : —L : :f-_;uTn_: L'I I_J
L-—:!u-m_l 11}- T ‘Eno

|w-snm |

jL=15um!

T
u’i il

-3um
-3p

|._J

Figure 11. Transistor length and
width modulations.

Simulations were performed to determin the noise immu-
nity in the voltage supply, V,,. We wanted to find if a
enabled detector was triggered by a change in the supply
voltage. Simulations showed that a swing of 0.75V on the
5.0V V, line was accepted.

Simulation plots are shown in appendix A and the SPICE
simulation file in appendix B.

3.2 Circuit layout

The detector was constructed using the 3pm, Si-gate, P-
well and double metal CMOS process by NORDCHIP
[10]. We used the SAGA and PAC layout programs
[11,12].

Digital CMOS technology is fairly tolerant to batch varia-

tions in transistor parameters. However, using this techno-
logy for realizations of analog circuits may introduce
faults. Large variations in the threshold voltage may be
critical as this will affect the gain modulation of the
amplifying inverters. The CMOS technology has, howe-
ver, been used in previous detector designs [13].

When designing the detector cell layout the work was
concentrated to minimize the used area. Minimizing the
area has two major effects. It increases both the resolution
and the sensitivity of the detector. The detector plate is

== =)

Figure 12. The detector cell layout.

made in the 2nd metal layer totally covering and protec-
ting the underlying detector cell electronics. Interconnec-
tions within and between the detector cells were made
using the 1st metal, doped tunnels and poly layers. Figure
12 shows the detectorcell layout.

It would be desirable to protect the input amplifiers
against flash over, which easily may occur. Such a
protection may consist of a diode or a transistor connec-
ting the detector plate to ground [7]. Input protection
circuits effects the input plate by increasing the capacitan-
ce and thus lowering the detection voltage step.

Grounded shielding plates are made in the 2nd metal layer
covering the reset and readout electronics. These plates
protects against flash over and electron pulses.

Twodifferentchips have been constructed using the same
detector cell layout. The first is a full 16*16 detector
circuit with readout electronics and reset network, the
other is a detector cell test circuit. On the test circuit two
detector cells are integrated with access to the connecting
buses and the the detector plate.

Plots showing the layout of the two chips and the detector
call are supplied in appendix C. The full detector circuit is
shown in a reduced 2*2 version.

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

4. CONCLUSIONS.

The new layout presented solves some problems but
introduces new ones. One problem discovered is the
incapability to handle, or detect, simultaneous electron
pulses. A multiple pulse produces aerroneous cell address
asthedifferentaddressesare overlaid on the bus. Another,
more serious problem, is the fault tolerance. If one detec-
tor cell is 'constantly on', as an effect of an integration
fault, then the whole chip is locked. Simulations has
shown that the tolerance in supply voltage noise and
temperature drift is good. Until fabrication, now under-
way, we will not know the exact measured specifications
of the detector.

Further development of the detector circuit may include a
new amplifier strategy. A differential charge sensitive
amplifier would solve some of the drawbacks found.

5.REFERENCES

[1]. L.J.Richter and W. Ho.
Position-sensitive detector performance and
relevance to time-resolved electron energy loss
spectroscopy.
Rev.Sci.Instrum. 57, 1469, 1986.

{2]. L. Asplund, U. Gelius, P-A. Tove,

S-A Eriksson and N, Bingefors.
Position-sensitive focal plane detectors for
electron (ESCA) spectrometers.
Nucl.Instrum.Methods.Phys. 226,204, 1984.

[3]. J.Tirén, U. Magnusson, K. Bohlin
and P-A. Tove.
A position sensitive LSI detector for low energy
(ESCA) electrons.
12th Nordic Semicond. Meeting 255, 1986.

[4]. U.Gelius, L. Asplund, E. Basilier, S. Hedman,
K. Helenelund and K. Siegbahn.
A high resolution multipurpose Esca instrument
with x-ray monochromator.
Nucl.Instrum.Methods.Phys. 85, 1984.

[5]. E Basilier.
Multidetector systems for Electron spectroscopy
Uppsala University Institute of Physics,
UUIP-1021, 1980.

[6].

[73.

[8].

[9].

[10].

[11].

[12].

[13].

L. Bjérnfot.

Microprocessorstyrt videokamera interface med
GPIB kommunikation.

Uppsala University Institute of Physics, 1987.

G. Zimmer.

Technology for the compatible integration of
silicon detectors with readout electronics.
Nucl.Instrum.Methods.Phys. 226, 175, 1984.

J. Walker, S. Parker, B. Hyams and S. Shapiro.
Development of high density readout for

strip detectors.

Nucl.Instrum.Methods.Phys. 226, 200, 1984.

A. Vladimirescu, K. Zang, A.R. Newton,
D.O. Pedersson,

SPICE Version 2G User’s Guide.

A. Sangivanni-Vincentelli,

University of Califorina, Berkley.

C. Svensson, University of Link&ping,
L. Philipson and S. Mattisson,
University of Lund,

K. Jeppson, University of Goteborg,
Portable CMOS design rules for the
Swedish Universities.

C. Hammar.

SAGA - A software package for LSI
artwork design.

Institute of Microwave, Stockholm,
IM-report no. 183-1006.

C. Hammar.

Pascal Artwork Compiler 4.1 Reference Manual
Institute of Microwave, Stockholm,

IM-report no. 184-1001.

R. Hofmann, G. Lutz, B.J. Hosticka, M. Wrede,
G. Zimmer and J. Kremmer.

Development of readout electronics for
monolithic integration with diode strip
detectors.

Nucl.Instrum Methods.Phys. 226, 196, 1984,

Detector current (A)

Amplifier input (V)

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

Appendix A.
2,0e-4
Reset open Reset close
1,5e-4
Electron pulse
1,0¢-4
1 Steady current
50e54 -
0,0e+0 SR
0,00e+0 2,50e-8 5,00e-8 7,50e-8 1,00e-7 1,25¢-7 1,50e-7
Time (s)
Simulation plot 1. Simulation of the detector supply current following an event.
Current peaks, up to 130uA, may occure during the reset
cycle. The steady state current is found to be 15uA.
1,60
s
Ver
1'50 1R A
1,45 -
1,40 -
1,35
1,30 T r T T
5,0c-8 5.5¢-8 6,0¢-8 6,5¢-8 7,0e-8 7,5¢-8
Time (t)
Simulation plot 2. Simulation of the error voltage, V,_, produced by

the transmission gate. The static error voltage is found
to be 62mV.

Detector voltage (v)

Readout voltages (V)

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

5 T — e
Amplifier output .,
4 e
37 Amplifier input
24
14 .
- Amplifier 1st stage 3
0 e Y T e T T -
0,0e+0 5,0¢-8 1,0e-7 1,5¢-7 2,0e-7 2,5¢-7
Time (s)
Simulation plot 3. Simulation of the detector amplifier. The voltage is
simulated in three nodes, the amplifier input, the first
amplifier stage and at the amplifier output.The detector
setup time, t_, and the amplifier delay time, t, are
shown. The setup time is found to be 30ns and the
delay time 50ns.
5.0 e
., 5_- Amplifier output o M"‘""-——-n_“
4,0 -
{ Internal bus -
3,5
3,0
2,5
] tdel
2,0
1,57
1,04 L e
0,5 Ready —,
0,0 . r r
5,00¢-8 7,50e-8 1,00¢-7 1,25¢-7 1,50¢-7
Time (s)
Simulation plot 4. Simulation of the readout electronics. The simulation is

performed in three nodes, the amplifier output, the internal
bus, and at the READY output. The delay in the readout

electronics, t,, is found to be 65ns.

10

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

Appendix B.

R T e T e E S e s
ELECTRONDETECTOR

* Translated from: det_cell (.AF4)
* Process: C2s8G
KRKKRAKRKKKKR A KA h R AR Ak kkhkkkhhkkkhkhhhkkhkhhhkkkhkhhkkkAxhkkdkhkk

* Extracted transistors:
*

* drain gate source bulk

Mosl 5 4 3 3 PMOS W=3.00U0 1=3.000

+ AD=160.13P PD=99.75U AS=79.00P PS=48.00U

Mos2 4 6 3 3 PMOS W=3.00U0 L=15.000
+ AD=160.13P PD=99.75U0 AS=76.00P PS=45.00U0

Mos3 7 5 7 3 PMOS W=6.00U0 1L=3.00U0

+ AD=160.13P PD=99.75U0 AS=91.00P PS=54.00U

Mos4 6 8 4 3 PMOS W=6.00U L=3.00U0

+ AD=149.50P PD=93.00U AS=76.00P PS=45.00U0

Mos5 8 9 3 3 PMOS W=3.00U0 IL=3.00U0

+ AD=160.13P PD=99.75U0 AS=79.00P PS=48.00U

Mos6 4 6 10 10 NMOS W=3.00U L=3.00U

+ AD=108.25P PD=67.50U

Mos7 5 4 10 10 NMOS W=3.00U0 IL=15.00U
+ AD=61.00P PD=36.00U

Mos8 6 9 4 10 NMOS W=3.00U L=3.00U
+ AD=79.00P PD=48.00U AS=108.25P PS=67.500

Mos9 8 9 11 11 NMOS W=3.00U0 L=3.00U0

+ AD=79.00P PD=48.000

* Extracted inter-layer capacitances:
*

Capl 9 7 5.00E-16
Cap2 9 3 5.90E-15
Cap3 11 7 1.00E-15
Cap4 11 9 1.00E-15
Cap$ 11 3 2.00E-15
Cap6 10 7 5.00E-16
Cap’ 6 9 3.38E-14
Cap8 6 10 1.34E-14
Cap9 6 11 5.48E-15
CaploO 10 3 1.30E-14
Capll 6 5 2.43E-14
Capl2 6 7 2.96E-14
Capl3 6 4 3.88E-14
Capl4 6 8 2.23E-14
Capl5 6 3 6.60E~-14

* Extracted capacitances (areas & perimeters):
*

caplé 10 0 4.31E-14

capl? 6 0 4.67E-13
capl8 11 - 0 3.93E-14

Capl9 9 0 3.60E-14
Cap20 3 0 1.16E-13
cap21 4 0 1.66E-14
Cap22 5 0 1.18E-14
Cap23 7 0 1.41E-14
Cap24 8 0 1.03E-14

* Put Your control cards here.
VDDl 3 0 5V
vss2 10 0 ov
vss3 11 0 ov

11

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

.MODEL NMOS NMOS LEVEL=1

+KP=40E-6 VTO=0.9 GAMMA=0.3 LAMBDA=0.05 PHI=0.6
+LD=0.45E~-6 TOX=50E-9 CGS0O=3.0E-10 CGDO=3,0E-10
+CGBO=1.0E~9 CJ=0.3E-3 CJSW=0.5E~-9

-MODEL PMOS PMOS LEVEL=1

+KP=15E~6 VTO=-0.9 GAMMA=0.4 LAMBDA=0.05 PHI=0.6
+LD=0.45E-6 TOX=50E-9 CGSO=3.0E-10 CGDO=3.0E~10
+CGBO=1.0E-9 CJ=0.2E~-3 CISW=0.4E-9

*DEFW compensated for oxide encroachment
.OPTIONS DEFL=3UM DEFW=1. 6UM
.OPTIONS LIMPTS=2500

* DISABLEl 9

* DISABLE2 (INV) 8
* OUT 5

* INV1 6

* INV2 4

IPULS 6 O PULSE (0 0.1602E-3 50NS ONS ONS 1NS 2000NS)
VENABLE 9 0 PULSE (0 5V 0.0 5NS 5NS 25NS 200NS)
.TRAN 0.5NS 250NS

.PRINT TRAN V (6) V(4) V(5) V(9) I(VDD1l)

.END

12

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

Appendix C.

ELECTRIN DETECTIR

MATS CARLSSIN)
CaRL JOHAN FRIDEN ||
HANS LUNDGYIST “--Uw-' l
FYSIKUM UPPBALA 1986 ’

—

13

Integrated Charge Sensitive Electron Detector for Electron Spectroscopy

[

|
| ELECTROM DETECTOR %5
|

Tm MATS CRRLSSON &
_ CaRL JOHBN FRIDEM —

i

FYSIKUM UPPSALA 1985

i T ® 1 [
LK CIE)R _
Ly

i
i
¥_ MANS LUNDEYIST

14

f I i
L KWK =

The Distributed Ada Run-Time System,
DARTS

by

M. Carlsson Gothe, D. Wengelin and L. Asplund.
Institute of Physics, Box 530
S-751 21 Uppsala, Sweden.

Abstract

A Distributed Ada Run-Time System, DARTS, is presented. The
system can be used in conjunction with a pre-partitioning as well as a
post-partitioning paradigm. A single program can be partitioned to run
on a loosely coupled multiprocessor system. The distributed units are
tasks, task objects, packages, variables, procedures, and functions.
Task objects can be dynamically distributed. High fault tolerance is
assured by unit redistribution. Design decisions, implementation details
and ideas are presented.

INTRODUCTION

Distribution of hardware and software for scientific, industrial, and military computer systems
has significantly increased system performance. Several methods, practices, and standards
exist for designing distributed hardware, but only a few such improvements have been made in
the software area. The effect of the software crisis, the cost of software overwhelming the cost
of hardware, is more accentuated for distributed systems in embedded applications than for
other types of applications.

Hardware for distributed systems is either tightly coupled or loosely coupled. A system where
processors share a common memory is defined as a tightly coupled system. Interprocess
communication is performed by shared data structures in the common memory. In a loosely
coupled system the memory is localized to each node, and communication is performed over
some interconnecting network.

The goal of this project is to develop a distributed Ada run-time system for loosely coupled
distributed systems. High fault tolerance is required. The system will be used in a testbed for
embedded scientific and military applications.

Partitioning Ada programs.

Partitioning of programs is performed by pre-partitioning or post-partitioning. In pre-
partitioning, the software structure is based on the hardware topology [1], [2], [3]. Hence, the
software may be designed to improve the fault tolerance without considerable run-time
overhead.

In post-partitioning, the design process is divided into two phases: functional design
(application) and functional distribution (hardware mapping) [4], [5], [6], [7]. The partitioning
information and source code are usually kept separate. Strong requirements are put on the run-
time system for efficiency, especially when high fault tolerance is required.

Considerable work has been made to evaluate the proper units of distribution in the Ada
language [8]. Five methods may be found; partitioning on Ada programs [9], on tasks [2], on
packages [1], [10], on any part of an Ada program [4], [6], or by adding new partitioning rules
and mechanisms into the Ada language [11].

Breaking a system into separate programs is the prevailing approach in the design of distributed
systems [9], [12]. The method is used for Ada as well as other programming languages. The
communication between the various programs is performed by calls to some added I0-
packages. As the partitioning decisions are taken early in the system life-cycle, the partitioning
tends to become static during the following phases and changes may require redesign of the
entire system.

Another shortcoming is that Ada only performs type checking within a program, and no
compiler support is given for the compatibility of the data types between programs.
Furthermore, Ada defines a rich variety of mechanisms for data-flow and process control
within a program. With the use of 10-packages for inter-program communication, we are
restricted to subprogram calls.

The partitioning on tasks is widely spread and accepted in the scientific community [2], [13],
[14]. The task is the basic structure for concurrency in Ada and therefore suitable for
partitioning. The Ada Language Reference Manual [15] states that tasks may execute in a
multicomputer environment, but there are only limited language facilities for distributing these
tasks on different processors. Furthermore, the task is not a compilation unit and must
therefore be encapsulated in a package. The task also lacks the declarative part and must
therefore use the encapsulating unit for its declaration purposes. Finally, some severe
problems, such as task termination dependencies to non local nodes, will arise.

The partitioning on packages is also widely accepted [1], [10], [16]. Several arguments may
be put in favor for this method. First, Ada packages are library units. Also, the package is the
main unit of logical program decomposition. However, constraints are often put on the
declarations in package interfaces. When distributing on library packages, only minor changes
are required to allow for distribution on library subprograms as well [17].

The method of partitioning on any part of an Ada program is developed in the APPL project
[18]. The aim is to supply an application independent system that supports the execution in a
distributed environment. The functional mapping of the application is described in a separate
language, APPL. (Ada Program Partitioning Language). The development of a system may start
on a uniprocessor and may later, in the final integration phase, be transferred to the distributed
target. The APPL approach gives the application no knowledge of the distribution. Hence, all
fault tolerance has to be implemented within the underlying run-time system.

Another method for partitioning is to add new mechanisms for partitioning and distribution to
the Ada language. Several authors note the absence of abstraction of a virtual node in the
language. The required compilation unit should combine the declarative ability of a package and
the parallel and stand-alone ability of a task. A suggestion have been made which involves the
combination of a main procedure and a package into the compilation unit partition [11].

Fault tolerance.

One of the main purposes of distributed systems, beside increased performance, is fault
tolerance. Fault tolerance involves error detection, error signaling, and error recovery by
means of controlled system degradation and redistribution. The error recovery may be
transparent [4], [S] or non-transparent [14], [6]. In transparent recovery, the run-time system
handles the recovery and reconfiguration. The application is not aware of an error state in the
system, In non-transparent recovery, the error is signaled to the application and it may take any
appropriate steps to degrade the service. A full description of the actions required after a
processor failure is given by Knight et al [14].

Ada does not fully support error detection and error signaling [6], neither does the LRM [15]
define the state of a distributed program after the loss of a portion of the computing
environment. The exception mechanism does not allow error states to be transferred between
parallel activities asynchronously since exceptions may only be transferred during a
rendezvous.

The loss of hardware will result in the loss or malfunction of software components, such as
variables, subprograms or tasks. However, the only predefined exception for the detection of
lost software resources is TASKING_ERROR, which is raised by the run time system in the
caller of an abnormal task. Exceptions for the detection of other lost software resources can be
added to the package SYSTEM. These exceptions should be raised by the run time system at
the access of the lost resource, analogously with TASKING_ERROR.

Kamrad et al [5] state that too many software designs include unnecessary details of the
hardware configuration in its reconfiguration strategy. From the software point of view it is of
no interest that a processor is lost, but rather the loss of the software operations which that
processor supported. Furthermore, introducing hardware details prevents the software from
being reusable.

Various authors illustrate the statement above. Kamrad et al [5] specifies a mechanism, in a
separate partitioning language, that makes it possible to raise a user defined asynchronous
exception into a list of named task when a defined state is set. Arévalo et al [2] defines a death-
notice mechanism; if a task wants to be informed of the death of another, it gives directions to
the run-time system to get calls through an entry point at these events. These two examples
show error signaling that does not involve hardware information. Another example is given by
Knight et al [6] where two exceptions, NODE_FAIL and COMM_FAIL, are raised in every
process that survives a processor failure or network failure respectively.

THE DISTRIBUTED ADA RUN-TIME SYSTEM, DARTS.

The Distributed Ada Run-Time System, DARTS, is developed by the Measurement and Data
Acquisition group at the Department of Physics, Uppsala University, in collaboration with the
Swedish Defence Research Establishment. The system is one example of solving some of the
problems described in the introduction above. The intention is to implement the entire run-time
system software in Ada, to test the behavior of Ada in real time applications, and to examine
portability and reuse of software components.

Partitioning and distribution in DARTS.

DARTS can be used for pre-partitioning as well as post-partitioning. Using the pre-partitioning
approach, the partitioning information is added to the application source code as pragmas. In
case of a post-partitioning approach, the partitioning could be performed by some CASE tool
generating the transformed Ada code.

DARTS aims to support the distribution of :

. tasks

. task objects

. packages

. variables

. subprograms

A software component that is selected for distribution is called a distributed unit (DU).

A program is partitioned into distributed units. A virtual node (VN) consists of a set of DUs
that can execute on the node. The subset that actually executes is defined at run-time.
Performance and fault tolerance implies that a DU may be a member of several virtual nodes,
and subprograms may even execute on several VNs simultaneously. Virtual nodes are assigned
to physical nodes (PN). Currently, DARTS can only map a single virtual node onto each
physical node.

The state of a DU on a given VN depends on the preparations for execution. A local DU is
currently executing on the node. The node must be prepared to receive calls to the DU from
other nodes. A remote and idle DU is idle on the local node. All calls to the DU are forwarded
to a remote node where the DU is currently executing. In case of a node failure, the state of the
DU may be changed from remote and idle to local. The remote state implies that the DU is
executing on a remote node. In case of a node failure the unit may be redistributed to another
node, but not to this node. The states of the DUs on a node are set at startup using a
configuration file.

The distribution is performed by source code transformation. This involves the insertion of
additional code into the application source code. The inserted code interfaces the application to
the distributed run-time system.

A number of global exceptions are declared to handle failure states. Recovery is transparent in
the case of stateless units. Only when a lost DU is referenced, exceptions signal the permanent
or temporary inaccessibility of the DU, as in the case of TASKING_ERROR in a non-
distributed environment. This mechanism has been chosen since a process needs no
information that a DU is lost if no communication or synchronization is required.

The DARTS is designed to put callers into a hibernating state during remote calls [19]. No
busy-wait in communication routines, as described by Eisenhauer et al [20], is needed.

Syntax for partitioning.

Other work [17] in the distributed Ada field indicate that pragmas are a proper base for
distribution and reconfiguration information. This is partly due to the fact that Ada does not
prohibit the adding of pragmas. One drawback is that the partitioning information is spread
over the source code.

Two pragmas are used for program partitioning; pragma Distribute and pragma Redistribute.
Pragma Distribute is used to identify a distributed unit and associate the unit to its executing
virtual node(s). Pragma Redistribute is used to enumerate the possible target nodes for
redistribution. In some cases, such as calls to a subprogram DU executing on several nodes,
the allocation of a task object DU, or during a redistribution, a choice of node has to be made.
The choice is ruled by a distribution criterion for the DU. The distribution criterion is specified
as one of the following:

. CURRENT_LOAD

. AVERAGE_LOAD

. MAILING_LOAD

. SPACE.

System overview.

The DARTS consists mainly of three parts; the communication layer, the distribution layer, and
the application layer.

The communication layer is the lowest level of the distributed Ada run-time system. The layer
handles the abstraction of the network and supports the upper layers with functionality for node
event handling and low level byte transfers.

The distribution layer contains logic for handling the current configuration of the distribution,
high level internode handshaking, node load monitoring, and redistribution. It supplies the
application layer with primitives for message transfers to distributed units, and provides a
means to determine if a given DU is executing locally or remotely.

The application layer consists of adapted application code, generated by a source code
transformer. The transformation is made by adding passive server units (SU), i e alternate
bodies, to the distributed units. The server unit forwards any call to the actual DU, which may
execute on the same node or on a remote node. Server units are sometimes named 'local
agents' {17], or 'client stubs' [21].

One SU exists on a node for each DU that executes on the node, may execute on the node, or is
used on the node. Some modifications may be necessary in the application code to adapt calls
to the SU. All such modifications are performed by the source code transformer.

The communication between SU and DU is made by passing command messages, constituting
remote calls and rendezvous, as well as unit creation, abortion, and elaboration.

SOURCE CODE TRANSFORMATION.

Identification of Distributed Units.

A unique unit number is generated for each distributed unit. The number is given at compile
time by the source code transformer for static units. For dynamically created units the number
is generated at run-time. Information about each unit is held in a unit identification record (UI).
Figure 1 shows the Ul declaration.

It is not allowed to separate a DU from the scope of the used non-local entities, unless these are
made distributed. To obtain the necessary visibility from the distribution layer, all nested SUs
identifiers are given a unique extension and put in the scope of the distribution layer.

Transformation of Procedures and Functions.

The distribution of a subprogram is simply performed by replacing the body of the subprogram
with a server body forwarding the calls to the DU on the executing node. The subprogram Ul
is included in the server unit body as a constant. The actual subprogram code is included in the
SU, if the DU is selected for local execution. The implementation of the SU is described in
Figure 2. It is not allowed to separate a subprogram DU from the scope of the used global
variables, unless these variables are DUs.

Transformation of Distributed Variables.

The DARTS concept comprises two different paradigms for distributed variables. The first is
based on a totally distributed ownership of the variable, the second defines a single owner with
all others using that one instance. Both paradigms use the same support from the distribution
layer. :

In the first case, the pragma DISTRIBUTE is used to identify all owners of the variable. A
local copy is maintained in the distribution layer on each node and each variable update will be
transformed to an update of the local copy in conjunction with a broadcast to update all other
instances in the network. A variable reference is transformed to a reference to the local copy of
the variable.

In the second case, the pragma DISTRIBUTE is used to identify the owner of the variable.
Any update or reference to the variable is transformed to a call to update or obtain the value
held by the owner. A pragma REDISTRIBUTE indicates an alternate owner of the variable.

Transformation of Packages.

The transformation of a package involves the creation of a procedure to contain the package
executable part. This initiation procedure is called when DARTS elaborates the package during
system startup or reconfiguration. Also, all entities declared in the package specification is
automatically regarded as distributed units. Figure 3 shows the transformation of a sample
package.

Transformation of Tasks and Task types.

Tasks and task type objects are replaced by server units implemented as packages, with all
entries declared as procedures using the entry identifiers as procedure names. Two additional
parameters are added to each entry procedure. The first parameter is used to identify the called
distributed task and the second parameter is used for sending the time value in timed entry
calls. Additional subprograms are used for initiation and abortion, and for obtaining task
attributes. All task objects derived from a task type are handled by the same SU package.
Figure 4 shows a task declaration and the corresponding server unit package.

All tasks that are selected for distribution are transformed to task types, as suggested by Bishop
et al [22]. The transformed code handles the creation of the task object. A new statement is
transformed to a call to the NEW_UNIT function. Figure 5 and 6 show the transformation of a
declaration of a static task object and a declaration of a dynamic task object with a new
statement. Note that the activation of the task, in Figure 5, is delayed until the beginning of the
parent block, while the activation of the task object, in Figure 6, is performed in the new
statement. An abort statement is transformed to a call to the ABORT_UNIT procedure in the
SU package. The task attributes TCALLABLE and T'TERMINATED are obtained by calls to
corresponding functions.

The parent-child synchronization is made possible by adding an additional entry, AWAIT_-
TERMINATION, to the task type declaration. This entry is accepted at the completion of the
task executable part. Figure 7 shows the transformation of a task type into a DU.

The entry calls in the application source code are transformed to fit the SU package. Figure 8
shows the transformation of a basic entry call. Note that the task object is provided as a
parameter, and that the package name is used for clarity only, since the use clause makes the
SU directly visible.

A timed entry call is rewritten into a block containing a call to the server package and an
exception handler containing the time-out executable code. Figure 9 shows the transformed
call. The conditional entry call is transformed into a timed entry call with a delay time of 0.0
seconds, in accordance to the functionality specified in the LRM [15]. The basic entry call is
implemented as a timed entry call with infinite time.

When the call is made, the time-out parameter is used in a timed entry call on the remote node.
If a time-out occurs, a time-out error message is returned to the calling node, resulting in the
raising of a TIME_OUT_ERROR exception. This exception will be caught in the exception
handler shown in Figure 9 and 10.

The termination mechanism in Ada is based on the block structure [15]. If a block, task, or
subprogram has dependent tasks, it terminates when it has completed and all dependent tasks
have terminated or are ready to terminate. An algorithm for termination in a multiprocessor
environment is described by Flynn et al [23].

However, any efficient implementation of task termination requires access to the run-time
system. The aim of the DARTS project was to keep the system portable and, hence, DARTS
only supports immediate termination after completion. Synchronization is performed as remote
or local rendezvous, between the parent and, in sequence, each child. The transformation of the
terminate alternative is not addressed.

KEY MECHANISMS.

Remote calls.

The DARTS implements a remote call mechanism that avoids busy waits [19]. Unlike Volz et
al [17], who uses a distribution package with a pool of call agents tasks for each distributed
unit, DARTS uses only one pool of general and reusable call agent tasks and a single
distribution package. This minimizes the storage needed for task agents in the distributed run-
time system. To decouple the application from the lower layers, a pool of agent tasks is used
on the calling node. This facilitates an orderly recover of a communication failure.

The distribution package consists mainly of the FORWARD_TO procedure. This procedure,
called by the call agents on an executing node, interprets the DU identification number,
unpacks the parameters and performs a call to the identified DU. As the call is completed, the
return parameters are packed and sent to the calling node.

Exception handling.

The exception handling in DARTS may be divided into two parts;
. System Exceptions,
. User Exceptions.

The system exceptions are TIME_OUT_ERROR, used for the distributed timed rendezvous,
DU_LOST_ERROR, used for signaling the loss of a distributed unit, and
DU_INACCESSIBLE_ERROR, used for signaling the temporary inaccessibility of a DU
during redistribution. For user exceptions, a simplified exception handling is used. All user
exceptions are mapped into a single USER_ERROR exception. The same method is used by
Atkinson et al in the DIADEM project [1].

Initiation and redistribution.

Distributed units are initiated in a uniform manner at system startup and during reconfiguration.
A unit is idle until initiated. The initiation is handled by the distribution layer.

The initiation is performed by sending a command message to the DU to be initiated. At the
remote node a call agent calls the initiate-entry, or -procedure, of the DU.

The redistribution logic is contained in the distribution layer and is implemented as a task. The
application continues its execution during redistribution, although all references to DUs
currently redistributed are signaled by the predefined DU_INACCESSIBLE_ERROR
exception. If a DU with several simultaneously executing copies is redistributed, calls are
simply redirected to the remaining DU copies.

The redistribution task is activated by the detection of a node failure. At redistribution, one of
the the remaining nodes is selected to be master of the redistribution. The master node accepts
redistribution requests from the other nodes, and, using a redistribution acknowledgement,
signals the acceptance of the redistribution mastership. The master then evaluates all DUs that
were executing on the failed node. For each such DU, the master selects a target node and
sends an initiation message to the DU on the selected node. When all DUs have been
processed, the master sends a redistribution completed message to all nodes in the network.
This message releases the redistribution state in the system and puts all redistribution handlers
to sleep.

Project status and performance tests.

DARTS was originally implemented on a VAX-cluster using the DEC Ada compiler. The
communication layer was first based on mailboxes where the nodes were simulated as -
processes on a single machine. In a second version of the communication layer, Ethernet
communication was used between workstations.

Currently DARTS is revised for increased performance and adapted to bare MC68030 boards
(Force CPU37ZBE) with Ethernet communication. The compiler used is the TeleGen2 cross
compiler, version 3.23 [24].

The performance data, on the MC68030 boards, available at this stage are not complete, nor
fully analyzed. However, it has been found that a complete remote procedure call takes 12.2
ms, using an unoptimized version of DARTS. One observation is that rendezvous times are not
very expensive using modern Ada compilers. A 'seize' operation on a semaphore implemented
as a task takes less than 80 ps, and the Ethernet interrupt task handles an interrupt and buffers
the incoming packet in another rendezvous in approximately 400 ps. However, packing and
unpacking parameters, and transferring parameter blocks to and from Ethernet buffers, is time
consuming.

10

CONCLUSIONS.

The Distributed Ada Run-Time System represent one approach to distribute Ada programs. We
have found that some restrictions must be put on the language for use in distributed
applications. High portability requirements on DARTS impose restrictions on the use of the
underlying run-time system, preventing an efficient solution to the exception transferring
problem and the distributed task termination problem.

We have also found that error recovery may, in the case of stateless DUs, be invisible to the
application. The application can be informed of a failure at a reference to a lost program part.
Hence, there is no need for an asynchronous exception mechanism to transfer failure states to
the application.

Most Ada mechanisms are maintained in DARTS. This includes:

. remote and local, timed entry calls,

. remote and local subprogram calls,

. shared variables,

. exceptions at remote and local calls,

. dynamic creation and abortion of distributed tasks,
. limited task termination.

The ability to execute several instances of procedures, and the possibility to allocate tasks of the
same task type on any number of nodes, make DARTS a vehicle to achieve high performance.

11

REFERENCES.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10}

[11]

(12]

C. Atkinson, T. Moreton and A. Natali,
Ada for Distributed Systems, Cambridge University Press, 1988.

S. Arévalo and A. Alvarez,
Fault tolerant distributed Ada,
2nd International Workshop on Real Time Ada Issues, 1988.

A.D. Hutcheon and A.J. Wellings,
Supporting Ada in a Distributed Environment,
2nd International Workshop on Real Time Ada Issues, 1988.

D. Cornhill,
A Survivable Distributed Computer System For Embedded Applications Written In
Ada, Ada Letters, Vol 3, Number 3, 1983.

M. Kamrad, R. Jha and G. Eisenhauer,
Reducing the Complexity of Reconfigurable Systems in Ada,
2nd International Workshop on Real Time Ada Issues, 1988.

J. Knight and M. Rouleau,
A New Approach to Fault Tolerance in Distributed Ada Programs,
2nd International Workshop on Real Time Ada Issues, 1988.

M. Kamrad, R. Jha and D. Cornhill, Distributed Ada. ACM, 1987.

D. Cornhill,

Four approaches to partitioning of Ada programs for execution of distributed
targets, IEEE Computer Society Conference on Ada Applications and
Environments, 1984,

R. Fors, U. Olsson and G. Larsson,
The use of Ada in large shipborne weapon control system,
Ada in Industry, Cambridge University Press, 1988.

R.M. Clapp and T. Mudge,
Ada on a Hypercube, Ada Letters, Vol 9, Number 2, 1989.

A.B. Gargaro, S.J. Goldsack, R.A. Volz and A.J. Wellings,
Supporting Reliable Distributed Systems in Ada9X,
Proc. of the symposium Distributed Ada 1989.

R. V. Scoy, J. Bamberger, and R. Firth,
An overview of DARK, Ada Letters, Vol 9, Number 7, 1989.

12

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Armitage and J. Chelini,
Ada Software on Distributed Targets: A Survey of Approaches,
Ada Letters, vol 4, Number 4.

J. Knight and L. A. Urquhart,
On the implementation and use of Ada on fault-tolerant distributed systems, IEEE
Transactions on Software Engineering, Vol SE-13, No 5, May 1987.

Reference Manual for the Ada Programming Language,
(ANSI/MIL-STD-1815A),Ada Joint Program Office,
Department of Defence, Washington, D.C. 20301, 1983.

T. Mudge, Units of Distribution for Distributed Ada.ACM, 1987.

R.A. Volz, P. Krishnan and R.J. Theriault,
Distributed Ada- A Case Study.
Proc. of the symposium Distributed Ada 1989.

D. Cornhill,
Distributed Ada Project. Honeywell,1982.

D. Wengelin, M. Carlsson-Gothe and L. Asplund,
A System Structure to Avoid Busy Wait, Ada Letters, Vol 10, Number 1, 1990.

G. Eisenhauer, R. Jha and J.M. Kamrad II,
Targeting a Traditional Compiler to a Distributed Environment,
Ada Letters, Vol 9, Number 2, 1989.

A.D. Hutcheon and A.J. Wellings,
The York Distributed Ada Project,
Proc. of the symposium Distributed Ada 1989.

J.M. Bishop, S.R. Adams and D.J. Pritchard,
Distributing Concurrent Ada Programs by Source Translation,
Software-Practice and Experience, Vol 17, December 1987.

S. Flynn, E. Schonberg and E. Schonberg,
The Efficient Termination of Ada Tasks in a Multiprocessor Environment,
Ada Letters, Vol 7, Number 7,1987.

L. Asplund, M. Carlsson Géthe, D. Wengelin and G. Bray.

Real time compilers for the 68020.
Ada Letters, Vol 9, Number 7,1989.

13

~- Declare the distributed unit kinds.

type UNIT_KIND is (TASK_TYPE_KIND, DERIVED_TASK_OBJECT KIND,
VARIABLE_KIND, SUBPROGRAM KIND,
PACKAGE_KIND) ;

-- The id of a distributed unit.
type UNIT (KIND : UNIT_KIND := SUBPROGRAM_KIND) is
record
UNIT NO : NATURAL;
case KIND is
when DERIVED_TASK_OBJECT_KIND =>
DERIVED FROM : NATURAL := 0;
DERIVED_TASK OBJECT SUBUNIT : NATURAL := (;
THE_TASK_OBJECT : ACCESS_TYPE := (others => 0);
when TASK_TYPE_KIND => TASK_SUBUNIT : NATURAL := 0;
when PACKAGE_KIND => PACKAGE_SUBUNIT : NATURAL := 0;
when others => null;
end case;
end record;

Figure 1. The Unit Identification record, UL

—- The original source code.
procedure INC(X: in out INTEGER) is
begin

X:= X + 1;
end INC;
pragma DISTRIBUTE(INC, TO => MACHINE_2);
pragma REDISTRIBUTE(INC, TO => MACHINE 1);

-- The transformed SU on machine 1.
procedure INC(X: in out INTEGER) is
use DISTRIBUTED_ MAIL;
MY D U: constant DISTRIBUTED_UNIT (SUBPROGRAM KIND) :=
(KIND => SUBPROGRAM_KIND, UNIT NO => 1);

-- Local DU.
procedure INC_LOCAL(X: in out INTEGER) is
begin
X=X + 1;
end INC_LOCAL;

begin
if UNIT_MODE (MY D_U) = LOCAL then INC_LOCAL(X) ;
else -— REMOTE or REMOTE_AND IDLE
declare
OUT_C, IN_C: COMMAND TYPE;
begin
OUT_C.KIND:= MESSAGE_ REQUEST;
INTEGER HANDLER.PACK (X, OUT_C.PARAMETERS); —-- Pack parameters.
SEND(MY_D_U, OUT_C, IN_C); -- Send and block caller.
INTEGER HANDLER.UNPACK (X, IN_C.PARAMETERS); —-- Unpack parameters.
end;
end if;
end INC;

Figure 2. Animplementation of a procedure server unit. The generated code allows
both local and remote operation depending on the unit state. Note the
unit identification declared as a constant and used when performing a
remote call.

14

-- The original source code.
package MY PACKAGE is
procedure SOME_PROCEDURE;
procedure SOME_OTHER PROCEDURE;
end MY PACKAGE;

package body MY PACKAGE is
—- Package declarative and
-- implementation part.
begin

~-- Package executable part.
end MY PACKAGE;

~— The transformed source code.
package MY PACKAGE is

procedure SOME_PROCEDURE;
procedure SOME_OTHER_PROCEDURE;
—- Added subprograms.

procedure INITIATE UNIT;

end MY PACKAGE;

package body MY PACKAGE is
-- Package declarative and implementation part.
procedure INITIATE is
begin
~- Package original executable part.
end INITIATE;
-- Empty executable part.
begin
null;
end MY PACKAGE;

Figure 3. The transformation of a package into a DU.

15

—-- The original source code.
declare
task THE SERVER is
pragma DISTRIBUTE(TO => MACHINE_ 1);
entry FIRST_ENTRY;
entry SECOND_ENTRY;
end THE_SERVER;
task body THE_SERVER is separate;
begin
-- Executable code.
end;

—-- The transformed source code.
-- Extracted to the uttermost application
-— level due to visibility reasons.
package THE_SERVER 001 is
subtype THE_SERVER T00l1 is UNIT;
procedure FIRST_ENTRY(
TASK_OBJECT : THE SERVER T001;
TIMEOUT : DURATION := DURATION'LAST);
procedure SECOND_ENTRY (
TASK_OBJECT : THE_SERVER T001;
TIMEOUT : DURATION := DURATION'LAST):;
-- New unit.
function NEW_UNIT(
THE_BLOCK_ID : BLOCK_ID)
return THE_SERVER TO001;
-- Abort procedure.
procedure ABORT_UNIT(
TASK_OBJECT : in out THE_SERVER_T001) ;
-~ Task attributes.
function UNIT_CALLABLE (
TASK_OBJECT : THE_SERVER T001)
return BOOLEAN;
function UNIT_TERMINATED (
TASK_OBJECT : THE_SERVER_T001)
return BOOLEAN;
procedure AWAIT TERMINATION (
TASK_OBJECT : THE_SERVER T001);
end THE_SERVER_001;

-- The transformed code.

declare
THE_SERVER :THE_SERVER_001.THE_SERVER_T001;
begin
THE_SERVER := THE SERVER_001.NEW_UNIT;
begin

-- Executable code.
end;
-- Added to the end of the block declaring
~- the task or the body of the package to
-- synchronize task termination.
THE_SERVER 001.AWAIT TERMINATION(THE SERVER) ;
end;

Figure 4. The transformation of a task declaration into a SU declaration and
the transformation of the declaring block.

16

—-— The original source code.

declare

A_SERVER : THE SERVER;
begin
A_SERVER.FIRST_ENTRY;
end;

-— The transformed source code.
declare

use THE_SERVER_002;

A _SERVER : THE_SERVER;
begin

A SERVER := THE_SERVER_OOZ.NEW_UNIT;
FIRST_ENTRY(A_SERVER);

THE SERVER_002.AWAIT TERMINATION(A_SERVER) ;
end;

Figure 5. A declaration of a static task object.

-- The original source code.
declare
A_SERVER : THE_ SERVER_POINTER
:= new THE SERVER;
begin
A SERVER.FIRST ENTRY;
end;

~- The transformed source code.
declare
use THE_SERVER 002;
A SERVER : THE_SERVER_POINTER
:= new THE_SERVER' (THE_SERVER 002.NEW_UNIT);
begin
FIRST_ENTRY(THE SERVER.all);
end;

Figure 6. A declaration of a dynamic task object.

17

task type THE_SERVER is
entry FIRST_ENTRY;
entry SECOND_ENTRY;
end THE SERVER;

task body THE_SERVER is

-- Task body declarative part.
begin

-- Task body executable part.
end THE_SERVER;

~- The transformed source code.
task type THE_SERVER is

entry FIRST_ ENTRY;

entry SECOND_ENTRY;

—-— Entry added by the transformer.
entry AWAIT TERMINATION;

end THE_SERVER;

task body THE SERVER is

begin
declare

-- Task body declarative part.
begin

—-— Task body executable part.
end;

accept AWAIT TERMINATION;
end THE_SERVER;

Figure 7. The transformation of a task DU.

18

-~ The original source code.
THE_SERVER.FIRST_ENTRY;

~= The transformed source code.
THE_SERVER_002.FIRST ENTRY(THE SERVER) ;

Figure 8. The transformation of a basic entry call.

-~ The original source code.
select

THE_SERVER.FIRST_ ENTRY;

or

delay 10.0;

-- Time-out executable part;
end select;

-- The transformed source code.
begin
THE_SERVER_OOZ.FIRST_ENTRY(THE_SERVER, TIMEOUT => 10.0);
exception
when DISTRIBUTED EXCEPTIONS.TIME_OUT_ ERROR =>
-- Time-out executable part;
end;

Figure 9. The transformation of a timed entry call.

-- The original source code.
select
THE_SERVER.FIRST_ENTRY;
else

-- Time-out executable part;
end select;

-~ The transformed source code.
begin
THE_SERVER_001.FIRST_ENTRY(THE_SERVER, TIMEQOUT => 0.0);
exception
when DISTRIBUTED EXCEPTIONS.TIME_OUT_ERROR =>
~— Time-out executable part;
end;

Figure 10. The transformation of a conditional entry call.

19

Daniel Wengelin
Swedish Defence Research Institute
S-102 54 STOCKHOLM, Sweden

Mats Carlsson Gothe, Lars Asplund
Uppsala Unversity
S-751 21 UPPSALA, Sweden

Abstract Using a source code transformation approach to Ada in adistributed environment will give some
implementation difficulties. This paper presents an all Ada, portable, solution to the problem of
suspending a caller on one node during a call to aremote node. The solution is based on two sets of tasks
on each node, making it possible for a caller to hang on an entry during the call. Algorithms are presented
in pseudo-Ada.

1lntroduction

Duringrecent years, mucheffort has been putinto the area of Ada on distributed targets. Several papers [Cor84, AMNSS,
CWAB9, BAP87] focus on the possibility to use standard compilers. This can be accomplished by means of a
preprocessor, that translates one Ada program into a set of Ada programs. The transformation is controlled by some
partitioning information.

One difficulty observed [EJK89] in the transformation is how to avoid the use of busy waiting during calls to a remote
node.

2 A system structure o avoid busy wait
Consider the following example.

The hardware consists of a two node network. The program to be run is basically a task on one node calling a procedure
on the other node. The task is to be suspended during the execution of the procedure.

The transformation of the source code will include the adding of code to handle the distribution and interface the network.
We assume that there is a package DISTRIBUTED_MAIL dealing with the interface. The package will declare a task
type, MESSAGE_HANDLER (M_H), and aresource pool to hold objects of the task type. The package will also declare
aRECEIVE procedure and a SEND procedure. A generic package, declaring a RECEPTOR task type, will be used. A
pool of RECEPTORS is also held on each node.

The MESSAGE_HANDLER algorithm is

loop
— Get a call from application
accept FORWARD (inparameters, addressee, mypointer)
— Send message over the network
SEND (inparameters, addressee)
— Wait for a RECEPTOR to call on reply message to me
accept REPLY (outparameters)
— Accept final call from application
accept READ_REPLY (outparameters)

end loop

The RECEPTOR is implemented as

loop
— Queue on network port for (request) message
RECEIVE (inparameters, addressee, frompointer)
—~ Perform actual call
FORWARD_TO (inparameters, addressee, outparameters)
— Put reply message back on network
SEND (outparameters, frompointer)

end loop

The RECEIVE procedure gets a message from the network. It is implemented to return control to the RECEPTOR only
when arequest from another node arrives. If the message received is a reply to some earlier call from a message handler
on the local node, this message handler will be called. The following statements are found in the RECEIVE procedure.

GET_REQUEST : loop
GET_FROM NETWORK (message)
if message.IS A REPLYthen
message.FROM HANDLER.REPLY (message.OUTPARAMETERS)
alsa
exit GET REQUEST
end if
end loop GET REQUEST

The transformation of the original program will include substituting the procedure body on the calling node. The stub
will perform the following algorithm.

GET_A MESSAGE HANDLER (apointer)

PACK_INPARAMETERS (..., inparameters)
apointer.FORWARD (inparameters, addressee, apointer)
apointer.READ REPLY (outparameters)

UNPACK OUTPARAMETERS (outparameters,...)

The RECEPTOR task will be used as follows. On each node, apackage DISTRIBUTE is added during the transformation.
The package specification is empty, but the body includes several vital components. First, a procedure TO, which will
take a call, identify the addressee, unpack the inparameters, perform the call, and pack and return the outparameters.
Second, an instantiation of the generic RECEPTOR package, using the TO procedure as the generic actual to the
FORWARD_TO procedure. Finally, the package includes a resource pool for objects of the RECEPTOR task type.

The structure of a remote procedure call can be seen in fig. 1. The numbers denote the data flow sequence . Also in the
figure are numbers indicating the order in which the M_H accepts rendezvous and the RECEPTOR makes its calls.

During a call, the following happens; the task will make an ordinary procedure call(1), executing the substituted
procedure body. A M_H task will be obtained, and the actual parameters of the call will be transferred by arendezvous(2).
The calling task will then suspend itself, by means of a call to the READ_REPLY entry denoted 3”. Meanwhile, the
M_H passes the call onto the other node(3,4), where the callis caught by a waiting receptor(5,6). The receptor recognizes
the call and performs the actual call through the FORWARD_TO procedure(7). At return(8), a reply message will be
created and sent(9) back to the requesting node. There, another receptor will pick up the message through a call to
RECEIVE. InRECEIVE, the message is recognized as areply(11). Hence, the M_H pointer is extracted and the waiting
M_H is called(12). This will cause the release of the M_H, the acceptance of the READ_REPLY entry(13), and hence,
the release of the application.

NODE_1 NODE_2
f ; : DISTRIBUTED
CALLER UNIT

14 |1

SERVER_UNIT

SERVER _UNIT

MESSAG FORWARD_TO
RECEPTO HANDLE
\
\ 12 3 NEW_RESOURCE] NEW_RESOURCE
ve 1 KILL RECEIVE || SEND KILL

RECEIVE SEND MESSAGE_ MESSAGE_
HANDLER HANDLER

n = E [ro =

RECEIVEH SEND RECEIVEH SEND

Figure 1. Data and control structure in a remote call in DARTS
2

3 Conclysions
~There is a not very complex, all Ada, portable, way of having callers on one node suspended while their request is
processed on aremote node. Ithasbeen tested and proven feasible, and is now undergoing further refinement and testing.

4 References

[Cor84]

(BAPS7]

[AMNSS]

[CWAS89]

[EJK89]

D Cornhill

Four approaches to partitioning of Ada programs
for execution on distributed targets

IEEE Computer Society Conference on Ada
Applications and Environments

J M Bishop, S R Adams, D J Pritchard
Distributing Concurrent Ada Programs by Source Code Translation
Software- Practice and Experience, Vol 17(12), 859-884 (Dec-87)

C Atkinsson, T Moreton, A Natali
Ada for Distributed Environments
Cambridge University Press, 1988

M Carlsson, D Wengelin, L Asplund

The Distributed Ada Run-Time System, DARTS

Uppsala University Institute of Physics Report, UUIP-1213
Uppsala University, Institute of Physics, P.O.Box 530
S-751 21 Uppsala, Sweden

G Eisenhauer, R Jha, J M Kamrad II
Targeting a Traditional Compiler to a Distributed Environment
Ada Letters, Vol IX(2), 45-51 (Mar/Apr-89)

